1. Show that any problem in NP that has nondeterministic time complexity $O(f(n))$ can be solved deterministically in $O(f(n)c^f(n))$ time for some constant c.

2. Prove that if A is NP-hard, B is NP-complete and $A \leq_P B$, then A is NP-complete.

3. Given a boolean formula ϕ, prove that the problem of deciding whether there exists a variable assignment so that ϕ evaluates to false is NP-complete.

4. Show that the following is a 2-approximation algorithm for traveling salesman problem with triangle inequality: find a minimum spanning tree, perform a full traversal on the tree and keep exactly one arbitrarily chosen visit of each vertex in the traversal.

5. Show that the problem of finding an independent set of size k in an undirected graph with each of its n vertices incident to at least $n - c$ edges is fixed-parameter tractable for a given constant c.