Max-Flow (Ford-Fulkerson)

Emil Thomas 04/25/2019

Slides From

Flow network

A flow network is a tuple G = (V, E, s, t, c).

- Digraph (V, E) with source $s \in V$ and sink $t \in V$.
- Capacity c(e) > 0 for each $e \in E$.

Intuition. Material flowing through a transportation network; material originates at source and is sent to sink.

Maximum-flow problem

Def. An st-flow (flow) f is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]

- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

Maximum-flow problem

Def. An st-flow (flow) f is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]

• For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

Def. The value of a flow f is: $val(f) = \sum f(e) - \sum f(e)$ e out of s

Maximum-flow problem

Def. An st-flow (flow) f is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]

• For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

Def. The value of a flow
$$f$$
 is: $val(f) = \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ in to } s} f(e)$

Max-flow problem. Find a flow of maximum value.

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- · Repeat until you get stuck.

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- · Repeat until you get stuck.

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- · Repeat until you get stuck.

ending flow value = 16

Greedy algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path *P*.
- · Repeat until you get stuck.

but max-flow value = 19

Why the greedy algorithm fails

- Q. Why does the greedy algorithm fail?
- A. Once greedy algorithm increases flow on an edge, it never decreases it.
- Ex. Consider flow network G.
 - The unique max flow has $f^*(v, w) = 0$.
 - Greedy algorithm could choose $s \rightarrow v \rightarrow w \rightarrow t$ as first augmenting path.

flow network G

Bottom line. Need some mechanism to "undo" a bad decision.

Residual network

Original edge. $e = (u, v) \in E$.

- Flow f(e).
- Capacity c(e).

Reverse edge. $e^{\text{reverse}} = (v, u)$.

"Undo" flow sent.

Residual capacity.

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E\\ f(e) & \text{if } e^{\text{reverse}} \in E \end{cases}$$

original flow network G

residual network Gf

edges with positive residual capacity

Residual network. $G_f = (V, E_f, s, t, c_f)$.

- $E_f = \{e : f(e) < c(e)\} \cup \{e^{\text{reverse}} : f(e) > 0\}.$
- Key property: f' is a flow in G_f iff f + f' is a flow in G.

where flow on a reverse edge negates flow on corresponding forward edge negates flow on

Augmenting path

Def. An augmenting path is a simple $s \rightarrow t$ path in the residual network G_f .

Def. The bottleneck capacity of an augmenting path *P* is the minimum residual capacity of any edge in *P*.

Key property. Let f be a flow and let P be an augmenting path in G_f . Then, after calling $f' \leftarrow \mathsf{AUGMENT}(f, c, P)$, the resulting f' is a flow and $val(f') = val(f) + bottleneck(G_f, P)$.

AUGMENT(f, c, P)

 $\delta \leftarrow$ bottleneck capacity of augmenting path P.

FOREACH edge $e \in P$:

IF
$$(e \in E) f(e) \leftarrow f(e) + \delta$$
.

ELSE
$$f(e^{\text{reverse}}) \leftarrow f(e^{\text{reverse}}) - \delta$$
.

RETURN f.

Short Exercise & Discussion of solution in Lab

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightarrow t$ path P in the residual network G_f .
- Augment flow along path *P*.
- · Repeat until you get stuck.

```
FORD-FULKERSON(G)

FOREACH edge e \in E : f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s \rightarrow t path P in G_f)

f \leftarrow \text{AUGMENT}(f, c, P).

Update G_f.

RETURN f.
```


Exercise Handout and Survey in Ecampus

• Survey in ecampus->Lab1 makefile