Max-Flow (Ford-Fulkerson)

Emil Thomas
04/25/2019

Slides From
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pearson/07MaximumFlow.pdf

Flow network

A flow network is a tuple G=(V, E, s, t,c).
* Digraph (V, E) with source s€V and sink re V.
« Capacity c(e) >0 for each e € E. \
assume all nodes are reachable from s
Intuition. Material flowing through a transportation network;
material originates at source and is sent to sink.

capacity
v?\ 9 >©\
15 10
10 4 15
l \v \
S 5 :? 8 :O 10/@
15 \

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < fle) < cle) [capacity]

* Foreachvev-{s,s}: > fle = > fle [flow conservation]
e in to v e out of v
flow capacity

inflowatv = 5+5+0 =10

\5/9 outflowatv = 10+0 =10
N $ o/15 S
o' w* ’
K 5/5 _5/8QT]0/10+1’
/ Q
(o] AN
) ois o

10/16

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:
* Foreache€E: 0 < fle) < cle) [capacity]
* Foreachvev-{s,s}: > fle = > fle [flow conservation]

e in to v e out of v

Def. The value of a flow f is: wal(f) = Y fle) = > f(e)

e out of s e in to s
5/9
\\Q S//$ y//

/\Q 0
6\—5/5—) 5/8 10/ 10 @
2 \\Q
- Q
$ AN

7
value=5+10+10=@ \

10/16

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:
* Foreache€E: 0 < fle) < cle) [capacity]
* Foreachvev-{s,s}: > fle = > fle [flow conservation]

e in to v e out of v

Def. The value of a flow f is: wal(f) = Y fle) = > f(e)

e out of s e in to s

Max-flow problem. Find a flow of maximum value.

8/9
O < ¢
\Q\ //$ //0
6\—5/5—) 8/8 10/ 10 @
75 XN
>
% /6 \0\

~
value = 10+5+ 13 = \

13/16

Toward a max-flow algorithm

Greedy algorithm.
- Start with f(e) =0 for each edge e € E.

flow capacity
flow network G and flow f \ /
Q 0/4 Q
O 0
Q\\ 0/2 Z 0/6

@ 0/10 Q 0/9 Q

0/10

value of flow

/
@ 0

Toward a max-flow algorithm

Greedy algorithm.

* Find an s~¢ path P where each edge has f(e) < c(e).

flow network G and flow f
0/6 o

K 0/4
Q/ 0
Q\\ 0/2 i 7,

& e m\o—ono»@o

Toward a max-flow algorithm

Greedy algorithm.

* Augment flow along path P.

flow network G and flow f

010 ()

Toward a max-flow algorithm

Greedy algorithm.

- Repeat until you get stuck.

flow network G and flow f

0/10 O_

0O
o

& 0/6 -
“& / ‘0

2 10

Toward a max-flow algorithm

Greedy algorithm.

- Repeat until you get stuck.

flow network G and flow f

O

2/2

0/4

Toward a max-flow algorithm

Greedy algorithm.
- Start with f(e) =0 for each edge e € E.
* Find an s~¢ path P where each edge has f(e) < c(e).
* Augment flow along path P.
- Repeat until you get stuck.

ending flow value = 16

flow network G and flow f

OO

2/2 & 6/6 —
/ i /

@ 6/10 Q 8/9 Q 10/10

Toward a max-flow algorithm

Greedy algorithm.
- Start with f(e) =0 for each edge e € E.
* Find an s~¢ path P where each edge has f(e) < c(e).
* Augment flow along path P.
- Repeat until you get stuck.

but max-flow value = 19

flow network G and flow f

OO

0/2 > 6/6 ~
/ Z /

@ 9/10 Q 9/9 Q 10/10

Why the greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.
* The unique max flow has f*(v, w) =0.
* Greedy algorithm could choose s—v—w—t as first augmenting path.

flow network G

Bottom line. Need some mechanism to “undo” a bad decision.

Residual network

Original edge. e¢=(u,v) € E. original flow network G
* Flow f(e).
(: — 6/ 17—>(:>
* Capacity c(e). / \
flow capacity
Reverse edge. ereverse = (y,).
« “Undo” flow sent.

residual network Gr residual
Residual capacity. 4 capacity
u 11 > v
cle)— f(e) ifeecFE /
crle) = o rever 6
f(e) if e™*verse ¢ B \

reverse edge

edges with positive
residual capacity

Residual network. Gf= (V, Ef, s, t, Cf). / where flow on a reverse edge

negates flow on

° Ef ={e:f(e)< cle)} U {V°: f(e) > O}/ corresponding forward edge
* Key property: f'is a flow in G,iff f+f"is a flow in G.

20

Augmenting path

Def. An augmenting path is a simple s~¢ path in the residual network G;.

Def. The bottleneck capacity of an augmenting path P is the minimum
residual capacity of any edge in P.

Key property. Letf be a flow and let P be an augmenting path in G;.
Then, after calling f’' <= AUGMENT(f, ¢, P), the resulting ' is a flow and
val(f") = val(f) + bottleneck(Gy, P).

AUGMENT(f, ¢, P)

0 < bottleneck capacity of augmenting path P.
FOREACH edge e € P :

IF(e€E) f(e) < f(e) + 0.

ELSE f(ereverse) «— f(ereverse) — 9§,

RETURN f.

21

Short Exercise & Discussion of solution in Lab

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
- Start with f(e) =0 for each edge e € E.
* Find an s~ path P in the residual network G,.
* Augment flow along path P.
- Repeat until you get stuck.

FORD-FULKERSON(G)

FOREACH edge e €E E: f(e) < 0.
Gy < residual network of G with respect to flow f.
WHILE (there exists an s~t path P in Gy)

f <= AUGMENT(f, c, P).

Update G . augmenting path

RETURN f.

23

Exercise Handout and Survey in Ecampus

 Survey in ecampus->Lab1 makefile

