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Abstract- Traditional state-traversal-based methods for ver- 
ifying sequential circuits are computationally infeasible for cir- 
cuits with a large number of memory elements. However, if the 
correspondence of the memory elements of the two circuits can 
be established, a difficult sequential verification problem can be 
transformed into an easier combinational verification problem. 
In this paper, we propose an approach that combines two com- 
plementary simulation-based methods for fast and accurate storage 
correspondence. Experiments on the large ISCASS9 benchmark 
circuits demonstrate the superiority. 

I. INTRODUCTION 

Traditional techniques to solve the problem of checking 
the equivalence of two sequential circuits involve state-space 
traversal of the two circuits or of their product machine using 
BDDs. If the state space is large, these methods could face the 
problem of memory explosion. However, if a correspondence 
can be established between the storage elements (flip-flops) of 
the two circuits, the two circuits can be verified using efficient 
combinational verification techniques [3]. 

Given two sequential circuits to be verified, it is often the 
case that a flip-flop correspondence exists, or is even known 
to the designers. But it is difficult to specify all the cor- 
respondences through a simple command or expression. So 
most commericial verification tools have an automatic flip-flop 
matching preprocessor that uses functional or ad-hoc methods 
based on signal names to match flip-flops. Ideally all the cor- 
respondences will be identified and reported by this prepro- 
cessor. If there remain some un-corresponded flip-flops, users 
can choose to specify all the correspondences manually or just 
provide some correspondences and then run the preprocessor 
again to find more correspondences. The functional flip-flop 
matching algorithms published so far are not robust. In fact 
none reports all the results for the big ISCAS 89 benchmark 
circuits. As for the ad-hoc methods, because tools that do de- 
sign transformations such as clock tree insertion, or scan in- 
sertion, often do not preserve signal names, they may also fail 
in some cases. In such cases, designers have to specify the 
correspondence between flip-flops manually, resulting in inef- 
ficiency and errors. The goal of this paper is to develop a tech- 
nique to find as many correspondences as possible within an 

Rajarshi Mukherjee . 
Fujitsu Laboratories of America 

595 Lawrence Expressway 
Sunnyvale, CA 94087 

e-mail rmukherj @fla.fujitsu.com 

expected running time limit. We will report results on all the 
big ISCAS 89 circuits. The main metrics of a flip-flop match- 
ing technique are the following: (1) matching accuracy, (2) 
runtime, and (3) memory requirement. Our experiments show 
that the proposed method outperforms both a sampling-based 
method and an ATPG-based method in all three respects. 

The storage correspondence (flip-flop matching) problem 
can be defined as follows: 

Definition 1.1 Given two sequential circuits, M I  and M2, with 
pip-pops S = {SI,. . . , s,,} and T = { t l ,  . . . , tm} respectively, and 
having identical state encoding', the automatic storage cor- 
respondence problem determines a set of groups of flip-flops, 
G = {g 1 ,  . . . , gk},  such that each gi contains one or more pip- 
Jlops from both circuits and the pip-jops in each group cannot 
be distinguished. Set G defines the correspondence between 
thejip-flops of the two circuits. 

The rest of the paper is organized as follows. Section I1 
briefly outlines the existing techniques to solve the flip-flop 
correspondence problem. Section I11 presents the proposed 
algorithm. Experimental results are presented in Section IV. 
Section V presents the conclusions and future research direc- 
tions. 

11. RELATED WORK 

Several approaches for automatic storage correspondence 
exist in the literature. Broadly, these methods can be divided 
into the following three categories: (1) Simulation-based, (2) 
ATPG-based, and (3) BDD-based. 

A random pattern simulation-based approach has been pre- 
sented [4], where the two circuits are simulated from the initial 
states with randomly generated vectors applied to the primary 
inputs. Transitive fanin and fanout-based analysis is used to 
further enhance the capability of the method. This approach is 
deficient in matching accuracy because of its reliance on ran- 
dom pattern-based simulation. 

A sequential ATPG-based state justification method for stor- 
age correspondence has been proposed [ 11. This method oper- 
ates on pairs of flip-flops in one circuit. Given two flip-flops 

'Note that our definition allows the presence of redundant flip-flops in the 
circuits. 
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f i  and f 2  to be distinguished, [ I ]  models the problem as a test 
generation problem by inserting an XOR gate fed by fi and 
f 2 .  The two flip-flops cannot be distinguished if a s-a-0 fault 
at the output of this XOR gate is proved untestable by a se- 
quential ATPG tool. If a test sequence is found, it is applied 
to both the circuits to divide the flip-flops into additional clus- 
ters. If there are redundant flip-flops in the circuits, this method 
can become expensive since it has to prove the corresponding 
faults untestable. 

A fixed-point computation-based approach using BDDs has 
been proposed [ 5 ] .  Here the flip-flops of the two circuits are 
initially assumed to be in the same cluster. Based on this as- 
sumption, the BDDs for the next-state functions are built. The 
existing clusters are further divided into new clusters based 
on the equality of the next-state function BDDs. This pro- 
cess continues until the clusters cannot be refined any fur- 
ther in two successive steps of computation (fixed-point). This 
method is prone to memory explosion due to its use of BDDs. 
Another method [SI has been proposed which uses sampling- 
based BDDs to compute equivalence groups of flip-flops. The 
use of sampling [SI reduces the possibility of memory explo- 
sion. However, the use of BDDs can still be time consuming 
and inefficient in terms of memory usage for large circuits. 

Another BDD-based signature computation approach to 
identify flip-flop matching has been described in [7]. Znput sig- 
natures and output signatures for the flip-flops are computed to 
establish flip-flop matching between two circuits. 

Some other automatic storage correspondence techniques 
have been proposed in [6]. 

111. THE PROPOSED ALGORITHM 

A. Basis of the Proposed Algorithm 

The proposed algorithm is based on the following two ob- 
servations: (1) when a random pattern vector is applied on the 
primary inputs of two designs (the corresponding inputs will 
always be assigned the identical value), based on the responses 
(simulation results) of the next state lines, we can divide the 
flip-flops into two clusters, one includes all flip-flops with a 
logic value 0 on the next state lines and the other with all the 
flip-flops with logic value 1. If we apply yet another vector on 
the primary inputs and perform logic simulation, we can fur- 
ther divide each of the two clusters into two clusters. Ideally, 
after applying some random vectors, all the clusters will con- 
tain just two flip-flops, one from each design. Please note that, 
in the simulation process, all the flip-flops in a cluster will be 
assigned the same value on the current state lines. This obser- 
vation tells us that, by applying a random vector on the primary 
inputs and the current state lines and observing the responses 
on the next state lines, we can divide flip-flops into more clus- 
ters and thus identify correspondences. 

(2) For a cluster of flip-flops SI ,s2, ..., sk,tl ,t2, ..., tk, for the 
current state lines, let SI = t1 = 1 and s2 = s3 = ... = Sk = 
t2  = t3 = ... = tk = 0 and assign random values on the primary 
inputs. After logic simulation, if any of the corresponding pri- 
mary output pairs has different responses, then we know si 
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Fig. 1. Overview of Storage Correspondence Algorithm 

I/ Routine assignxandom-value() assigns random 
// values to primary inputs and flip-flops. 
/I Corresponding primary inputs are assigned identical 
/I values. All flip-flops in a cluster are assigned the 
I/ same value. Routine simulate() does two-valued 
/I parallel pattern simulation. Routine 
// regroup-clusters() regroups current flip-flop 
// clusters based on values at next-state functions. 
I/ Routine allmatched() checks if all clusters 
// contain two flip-flops, one from each circuit. 
// Routine anomaly-detected() checks if any 
/I cluster has flip-flops only from one circuit. 
/I Routine limit_reached() checks if a predetermined 
// limit on number of simulation cycles has been 
/I reached. 

Rand-Sim(FF-clusters) 
{ 

assign-random-value (); 
simulate(); 
regroup-clusters(FF-clus ters); 
if (allmatched(FF-clusters) 

1 1 anomaly-detected(FF-clusters) 
1 1  limit_reached() ) 

exit; 

Randomsim(FF-clusters) 
else 

1 

Fig. 2 .  Random Pattern Simulation Algorithm 

182 



- 

Routine continueloop() checks if the algorithm will 
I1 continue. It checks the following conditions: 
/I (1) if a cluster with more than two flip-flops remains 
I/ (2)  if a pre-determined number of patterns has been tried 
11 for inputs and flip-flops not in the cluster being processed. 
I/ Routine assign-random..values() assigns random 
11 patterns to the primary inputs and flip-flops of 
I1 the two circuits. Corresponding primary inputs are 
/I assigned identical values. All flip-flops in a 
//cluster are assigned identical values. Routine 
// get-cluster() gets the next cluster that has 
/I more than two flip-flops. Routine 
/I assign-targeted-values(C, i, s) assigns 
11 boolean value 1 to the flip-flop s, in flip-flop 
/I cluster C and boolean value 0 to flip-flops SI. 
// 1 # i. Routine simulate() does two-valued 
/I parallel simulation of the two circuits. Routine 
/I check-consistent() retums TRUE if 
/I the corresponding primary outputs and already 
/I matched flip-flops have identical responses, else 
I1 retums FALSE. Routine nomatch() 
/I marks a flip-flop as unmatched. Routine 
/I match () records a flip-flop match and divides 
I1 the cluster further. 

TargetedSim (unmatched-FF-clusters) { 
while (continueloop()) { 

assignrandom_values(); 
C(s1,. . . , s k , t l , .  . . , t k )  = get-cluster(); 
for (i = 1 to k )  { 

count = 0; index = - 1; 
assign-targeted-values(C, i, s); 
simulate(M1); 
for ( j  = 1 to k )  { 

assign-targeted-values(C, j ,  t ) ;  
simulate(M2); 
if (checkronsistent0) 

count ++; index = j; 
1 

1 
if (count == 0) 

if (count == 1) 
no-match (si); exit; 

matchcsi, rindex); 

1 
1 

1 

Fig. 3. Targeted Simulation Algorithm 

cannot match t i .  Otherwise we say SI and ti is a possible 
match. Of course, when we change the values on the primary 
inputs and perform simulation again, we may find a previously 
possible match becomes impossible. For si, if there is one and 
only one possible match t j ,  then we know si and t j  is a match 
or there is no match for si and t i .  In this case, we report si and 
tj’ as a match. 

The differences between the two observations can be sum- 
marized as following: In observation 1, random vectors are 
applied on primary inputs and the current state lines. The re- 
sponses on the next state lines are observed and used to dis- 
tinguish flip-flops. With one pass (round) of logic simulation, 
we can potentially divide N clusters into 2N clusters. In obser- 
vation 2, a specific vector is chosen to exclude some flip-flops 
from consideration. It targets one pair of flip-flops at a time. 
For a cluster that contains 2N flip-flops, in the optimal case, it 
needs N + 1 rounds of simulation to find one match. If all the 
N2 possible matches have been checked (by simulation) and no 
matches is found, a new random vector will be generated and 
applied on the prinmary inputs and current state lines of the 
flip-flops in other clusters and flip-flops in a cluster will be as- 
signed the same value. Unlike observation 1, responses on the 
primary outputs or matched flip-flops are observed and com- 
pared. Whenever a difference on the corresponded primary 
outputs or flip-flops is found, the current simulation process 
will stop and next target pair of flip-flop will be simulated. 

An algorithm based on these two observations has been 
developed. The algorithm consists of application of random 
pattern-based simulation followed by targeted simulation. Tar- 
geted simulation can be viewed as an intelligent biased simu- 
lation, where the biasing is done based on a target flip-flop that 
has to be distinguished from other flip-flops in a flip-flop clus- 
ter. This makes targeted simulation complementary in nature to 
random simulation and makes the combined approach power- 
ful. Since the algorithm is based on simulation, it is extremely 
scalable and is easily applicable to very large sequential cir- 
cuits with thousands of memory elements. Figure 1 shows the 
overview of our approach. The details of our approach are de- 
scribed below. 

B. Random Pattern Simulation 

Random pattern simulation is an effective method to quickly 
distinguish a large number of flip-flops. Figure 2 outlines our 
application of random pattern simulation. 

Initially, all the flip-flops in the two circuits are grouped into 
one single cluster. Next, random patterns are applied to the 
primary inputs and the flip-flops. Corresponding primary in- 
puts are assigned identical values. All the flip-flops in a cluster 
are assigned identical values since they have not yet been dis- 
tinguished. The existing flip-flop clusters are further divided 
based on the values assigned to the next-state functions by sim- 
ulation. This process continues until one of the following con- 
ditions is met: (1) a predetermined limit on the number of sim- 
ulation cycles is reached, or (2) all flip-flop clusters contain ex- 
actly two flip-flops, one from each circuit (matched flip-flops), 
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or (3) if during the simulation, any cluster contains flip-flops 
only from one circuit. Flip-flops only from one circuit in a 
cluster indicate either a difference in the state encodings of the 
two circuits, or an error in one of the two circuits. 

C. Targeted Simulation 

Even though random pattern simulation can quickly distin- 
guish a large number of flip-flops, due to its non-targeted na- 
ture, its distinguishing ability drops off after a large number 
of simulation cycles. Application of any further random pat- 
terns usually cannot distinguish any further flip-flops. This is 
when a state of diminishing returns is entered and a comple- 
mentary technique should be applied to distinguish additional 
flip-flops. We have designed a targeted simulation-based ap- 
proach, which is fast and has efficient memory usage, for this 
purpose. Given a set of flip-flop clusters that contain more than 
two flip-flops (flip-flops which could be further distinguished), 
we focus our attention to one cluster at a time. First, random 
patterns are assigned to the primary inputs (corresponding pri- 
mary inputs are assigned identical values). Random patterns 
are also assigned to the flip-flops (all flip-flops in a cluster are 
assigned identical values). Next, each flip-flop cluster with 
more than two flip-flops is targeted as follows. Given a flip- 
flop cluster C = {SI, .  . . , S k , t l , .  . . ,tk}, where each flip-flop s, 
is from circuit MI and each flip-flop tl is from circuit M2,  the 
algorithm shown in Figure 3 is applied to further distinguish 
them. 

Given a flip-flop cluster C = {SI,. . . , S k , t l , . . . ,  tk}, Tar- 
getedSim has a complexity of O(k2) times circuit size (sim- 
ulation time). While Rand-Sim() can potentially generate 
multiple new clusters with each round of simulation; Tar- 
getedSim can only generate one more new cluster per pass 
(with at least one round of simulation on M1 and k rounds 
of simulation on M 2 ) .  To have a small k is important to the 
success of TargetedSim. This is exactly what Rand-Sim() 
can provide. Our experiments show that, after applying 
RandSimO on the initial cluster that includes all the flip-flops, 
many small clusters will be generated. And TargetedSim can 
find new matches from the small clusters efficiently. 

IV. EXPERIMENTAL RESULTS 

The proposed algorithm has been applied to the ISCAS 89 
benchmark circuits. The experiments have been carried out 
on a SUN Ultra 30 workstation with 512MB memory. In the 
following experiments two identical copies of the ISCAS 89 
benchmark circuits have been taken and flip-flops of one copy 
have been matched with the flip-flops of the second copy. Sig- 
nal names and structural information, except PI and PO corre- 
spondences, have not been used during matching. 

In Table I , we present results comparing random pattern 
simulation-based flip-flop matching (using only Rand-Sim()) 
with flip-flop matching using the proposed approach. A limit 
of 5000 vectors was imposed for random pattern simulation- 
based flip-flop matching. The proposed approach consists of 

application of random pattern-based simulation with a limit of 
300 vectors followed by application of targeted simulation to 
the flip-flop clusters produced by random pattern simulation. 
Column 1 gives the name of the circuit. Columns 2,3, and 4 
list the # primary inputs, # primary outputs, and # flip-flops 
respectively in the circuit. Column 5 lists the # vectors applied 
for random pattern simulation. Column 6 lists the average size 
of the flip-flop clusters at the end of the random pattern simu- 
lation. Column 7 lists the runtime in seconds for the random 
pattern simulation-based approach. Column 8 lists the number 
of random vectors applied in the proposed approach. Column 
9 lists the # targeted vectors applied in the proposed approach. 
Column 10 lists the average size of the final flip-flop clusters 
after the application of the proposed approach. Column 1 1 lists 
the runtime of the proposed approach in seconds. 

Most of the smaller circuits do not require targeted simula- 
tion. In Table I, we use "-" to represent cases where targeted 
simulation is not required, and hence the results obtained by 
the proposed approach are identical to those obtained by ran- 
dom pattern-based simulation. However, significant gains in 
runtime and matching accuracy2 can be obtained by the pro- 
posed approach for the large circuits. We use 5000 vectors for 
the pure random simulation method such that the running time, 
compared with the proposed method, will not be too large. In 
fact we did make experiments with 50000 vectors for the ran- 
dom simulation method and there is only a small improvement 
in the results. 

As mentioned earlier, targeted simulation is very efficient 
for small flip-flop clusters. In Table I1 we show that in the pro- 
posed approach the average cluster size after the application of 
300 random vectors is indeed quite small. These small clusters 
are then fed to targeted simulation. Therefore, targeted simu- 
lation is extremely efficient. 

Another interesting metric illustrating the efficiency of tar- 
geted simulation is shown in Figure 4. In the graph the x-axis 
denotes the number of vectors applied, and the y-axis denotes 
the average size of the flip-flop clusters after the application of 
each vector. We have plotted data obtained by applying ran- 
dom pattern simulation-based flip-flop matching and the pro- 
posed approach respectively to S9234. The graphs show that 
random pattern simulation is unable to distinguish a large num- 
ber of flip-flops after the application of about 1500 vectors and 
the average cluster size saturates at about 2.23. On the other 
hand, application of about 700 targeted vectors (applied af- 
ter first applying 300 random vectors) rapidly distiguishes a 
large number of flip-flops and reduces the average cluster size 
to about 2.18. This graph shows that the proposed approach 
achieves improved flip-flop matching speed and accuracy by 
properly combining the complementary capabilities of random 
pattern-based simulation and targeted simulation. 

I11 we compare the proposed method with 
sampling-based flip-flop matching [8] and ATPG-based flip- 
flop matching [ 11 for the large circuits in the ISCAS 89 bench- 
mark suite. The results show that the proposed approach has 

In Table 

'The clo\er the average final flip-flop cluster size i \  to 2, the higher the 
matching accuracy. 
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Cimuic S 9 3 4  

E l Y l k r  AWI+!C ATPG to replace target simulation in the following way. For 
a cluster of flip-flops, SI, s2, ..., Sk,  t l ,  t 2 ,  ..., t k ,  we use ATPG 
to check if si XOR t j  is s-a-0 testable. If yes, we know si and 
r j  cannot be a match. If s1 cannot be matched with t2, ..., fk, 
then we say SI, tl is a match. The ATPG search will be used in 
a limited manner so that it will not spend much time on cases 

si* 

nndomrim 
___.___..___..____._--.- 

____.--- 
,_--- 

.where si XOR t j  is s-a-0 untestable. 
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- 
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3 
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- 

- 

2 0.05 
2 0.05 
2 3.96 
2 0.03 
2 0.03 

2.012 8.59 
2.186 36.01 
2.213 214.71 
2.132 41.12 
2.214 548.21 
2.260 389.62 
2.006 274.62 

ave. size 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2.235 
2.235 

2 
2 

2.027 
2 
2 

2.012 
2.245 
2.584 
2.220 
2.348 
2.282 
2.174 

ion 
time 
0.03 
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0.01 
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0.05 
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1415.00 
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300 
300 

300 

300 
300 
300 
300 
300 
300 
300 

TABLE I 
RANDOM SIMULATION vs. PROPOSED APPROACH 

S 1423 
S1488 
S1494 
S5378 2.012 
S9234 2.245 
S13207 2.380 
S15850 2.086 
S35932 abort 
S38417 abort 
S38584 abort 

66.62 
334.80 

abort 
abort 
abort 

time 

1.10 
1.47 

3.96 

8.59 
36.01 

214.71 
41.12 
548.21 
389.62 
274.62 

TABLEIII 
COMPARISON WITH SAMPLING AND ATPG-BASED METHODS 
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