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Abstract 
Extending the useful life of IDDQ test to deep submicron 
technologies has been a topic of interest in recent years. 
IDDQ test loses its effectiveness as the signal to noise ratio 
degrades due to rising background current and fault-free 
IDDQ variance. Defect detection using IDDQ test requires 
separation of deterministic sources of variation from 
defective current. Several methods that use deterministic 
variation in IDDQ at the wafer level for estimating fault-free 
IDDQ of a chip are proposed. This paper compares two such 
methods: Nearest Neighbor Residual (NNR) and Neighbor 
Current Ratio (NCR). These methods are evaluated using 
industrial test data for a recent technology. 

Keywords: IDDQ testing, spatial correlation, NNR, NCR 

1. Introduction 
Extending the life of IDDQ test to deep sub-micron 

(DSM) technology by improving its sensitivity is a topic of 
research in recent years [1][2]. Several methods that use 
wafer-level IDDQ test data for estimating fault-free IDDQ, and, 
in turn, for outlier identification have been proposed 
[3][4][5]. Two data statistical post-processing (SPP1) 
methods called Nearest Neighbor Residual (NNR) and 
Neighbor Current Ratio (NCR) have been proposed. This 
paper investigates whether one is better than the other and 
under what conditions, to observe whether the findings can 
be used to improve SPP-based methods. A general review 
of IDDQ test challenges and methods can be found elsewhere 
[6][7]. We review NNR [3][8] and NCR methods [5] in 
Section 2. A variation of NCR is suggested. Section 3 
describes our analysis method. Section 4 describes the 
results obtained from a 130 nm technology data2. Section 5 
presents conclusions. 

2. Review of NNR and NCR Methods 
Both NNR and NCR are based on the observation that a 

part of the variation in IDDQ of adjacent chips on a wafer is 
deterministic in nature. If the deterministic variation can be 
separated out, the remaining variation is most likely due to 
                                                           
1 SPP is trademark of LSI Logic Corporation. 
2 This data comes from Texas Instruments. The conclusions drawn are our 
own and do not necessarily represent the views of TI. 

a defect. This premise can be used for identifying outlier 
dice at the wafer level. By estimating deterministic variance 
more accurately, outlier screening can be improved. The 
two approaches are described next. 

2.1 Nearest Neighborhood Residual (NNR) 
The NNR-based approach estimates intrinsic IDDQ of a 

die using neighboring dice IDDQ data. It is based on the 
assumption that the intrinsic IDDQ is relatively independent 
of the test vector and is a function of the die position on the 
wafer. The estimate of intrinsic IDDQ for the die at position 
(x,y) is obtained by averaging IDDQ over all test vectors Nv. 
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The goal of the NNR method is to reduce the variance 
in fault-free IDDQ data. The total IDDQ variation ( 2

iddqσ ) is 

composed of a vector-dependent component ( 2
vectorσ ) and a 

wafer-level component ( 2
waferσ ). Since vector-to-vector 

variation is averaged out by Eq. (1), the variance in 
distribution of the mean IDDQ is equal to that from process 
variation ( 2

waferσ ). Variance reduction can be achieved if a 
new value for process-induced variation smaller than 

2
waferσ is found. NNR uses IDDQ variance in the local 

neighborhood ( 2
odneighborhoσ ) to replace 2

waferσ . Variance 

reduction is possible if the following equation is satisfied: 
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The neighborhood as defined by the NNR method 
consists of neighboring die of the reference die (XrYr) 
whose IDDQ is to be estimated. The neighboring dice are 
divided among different groups based on their distance 
from the reference die. Here, distance between any two die 
is the straight line connecting their centers. Each die is 
considered one unit wide and one unit long. The first five 
groups and their distances are shown in Table 1 and marked 
in Figure 1. The reference die is shaded and marked as XrYr. 
The third column in Table 1 represents the horizontal and 



vertical distance in terms of number of die (units) from 
XrYr. 

The NNR method relies on correlation between 
neighboring die to obtain an estimate of fault-free IDDQ for 
die at XrYr. This is called the Nearest Neighbor Estimate 
(NNE). To obtain the NNE, at least k dice in the local 
neighborhood are considered, with a typical value of k 
being 8. The median of average IDDQ values for these k dice 
is used as the NNE for the reference die XrYr. While 
considering k neighboring dice, if sufficient dice are not 
available in a group, all available dice from the succeeding 
group are added. For example, if data is available for only 
two dice from group 2 (out of 4 possible), all available dice 
from group 3 (maximum 4) will be considered. Thus, in this 
case, a total of 8 dice will be considered; two each from 
groups 1 and 2, and 4 from group 3. This process continues 
until the lower bound on the user specified value (k) is met. 
The median of the average values for these k estimators 
gives the NNE. The NNR is the difference between the 
actual value and NNE. 
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An example of the variance reduction achieved by the 
NNR method is shown in Figure 3. It shows histograms of 
the actual IDDQ values and NNE obtained by NNR method 
for chips from a single wafer. The scale on the X-axis is the 
same for both figures. To protect sensitive data, the X-
coordinates and the mean values are not shown. For each 
chip, IDDQ was obtained by averaging 10 readings. NNE 
was obtained by considering all available neighboring chips 
from group 1 and group 2. In this figure, data for 501 chips 
is shown. Due to median value selection, NNE is less 
sensitive to outliers and has smaller variance than the 
original data. 
Table 1. Neighborhood Distances from XrYr. 

Group Distance (n) Vector 
1 1 (±1,0), (0, ±1) 
2 2  (1,1) 
3 2 (±2,0), (0, ±2) 
4 5  (±2, ±1), (±1, ±2) 
5 8  (±2, ±2) 

 
Figure 1. NNR Neighborhood Group Definition. 

2.2 Neighbor Current Ratio (NCR) 
The NCR-based method also relies on wafer-level 

spatial correlation between neighboring dice on a wafer. 
The neighborhood considered for NCR, however, is limited 
to eight adjacent dice. Referring to Figure 1, this 
corresponds to dice from groups 1 and 2 only. NCR is the 
ratio of IDDQ values of the reference die (XrYr) and 
neighboring die for identical vectors. For k neighbors and n 
vectors, a total of n•k NCR values can be obtained. The 
conventional definition of NCR considers only the 
maximum of these values [9]. This value essentially 
represents the maximum deviation of reference die IDDQ 
from the “normal” IDDQ variation in the neighborhood. 
Thus, 
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where i is the vector number and k is the neighboring die. 
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Figure 2. Variance Reduction Obtained by NNE. 

Both NNR and NCR have some characteristics in 
common. Both methods rely on wafer-level correlation 
between neighboring dice. The definition of neighborhood 
need not necessarily be limited to physically adjacent dice 
on the wafer. It can be extended to dice that are highly 
correlated to the reference die due to manufacturing 
conditions [10]. In the extreme case, the most “influential” 
neighbors need not be from the same wafer [11]. In the 
present study, however, we only consider neighbors in the 
vicinity as shown in Figure 1. It may be noted that 
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sensitivities and accuracies of both NNR and NCR schemes 
are limited due to defect clustering [12] 

We can also use mean NCR – a value obtained by 
dividing the mean IDDQ of the reference die by the mean 
IDDQ of neighboring die – for comparison. In this case, out 
of k possible NCR values, the maximum NCR is used as the 
mean NCR.  Thus, 

k
meanIDDQ

meanIDDQ
meanNCR
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Although the mean NCR is a less sensitive method for 
outlier detection, it is somewhat similar to the NNR 
approach, and offers a better variance reduction alternative. 
This is illustrated with the help of Figure 3. It shows 
histograms for NNR, NCR and mean NCR values. Ideally, 
the mean NNR is zero.  Note that the NCR value defined in 
Eq. (4) has higher probability of being more than 1. This 
means that NCR can be used for more effective screening 
of hard-to-detect defects. It can be used to improve 
confidence for screening marginal outlier chips near the 
core population. 
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Figure 3. Comparison of Variance Reduction by NNR, NCR 
and Mean NCR (single wafer). 

3. NNR and NCR Comparison 
Both NNR and NCR methods rely on wafer-level spatial 

correlation. In order to compare NNR and NCR, we use the 
same neighborhood definition as NNR as described in 
Section 2. For each die position, the average IDDQ is 
obtained by considering all vectors. Neighbors from 

different groups are added until the minimum number of 
neighbors (k) is 8. Since all chips from a group are added to 
achieve this, in some cases the total number of chips 
considered can be more than 8. The NCR and mean NCR 
values are computed using Eq. (4) and (5) using the same 
neighborhood chips considered for NNR. 
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Figure 4. Scatterplot of Pre and Post-Stress IDDQ Values. 
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Figure 5. NNR, NCR and Mean NCR Distributions. 

Since all chips considered for analysis pass all other 
tests (stuck-at, function, etc.), we need an oracle to define 
what we consider to be “defective” chips. In the presence of 
burn-in data, such oracle is readily available [4]. For TI 
data, post-stress IDDQ measurements obtained under 



identical conditions as used for pre-stress IDDQ measurement 
are available. We use these values for distinguishing 
between good and faulty chips. A deviation of more than 
20% in any reading is considered to be indicative of a 
defect. The chips having post-stress IDDQ measurement 
smaller than pre-stress IDDQ measurement (healer chips) are 
also considered defective. This is conceptually illustrated in 
Figure 4 that shows the scatter plot of IDDQ readings of all 
chips. The guard band (20%) shown is not to scale. 

 
Table 2. Distribution parameters for NNR, NCR and Mean 
NCR for entire data set. 

Metric Mean (µ) Std. Dev. (σ) µ+3σ 
NNR - 16.27 - 
NCR 2.03 2.51 9.56 

MeanNCR 1.25 0.34 2.27 
 

Table 3. Distribution of Chips for Different Metrics. 

NNR 
NCR↓ Accept Accept Reject Reject  

Accept 10048 3454 39 - Accept 
Reject 10 56 - - Accept 
Accept 59 50 75 30 Reject 
Reject 15 12 13 9 Reject 

<20% >20% <20% >20%  
Post-stress IDDQ Change 

Mean 
NCR↑ 

 
 

Table 4. Distribution of Chips for Different Neighbor Groups. 

Metric A B C D Post-stress  
IDDQ change 

2162 5445 2030 495 <20% NNR 
Accept 496 1785 963 328 >20% 

10 63 43 11 <20% NNR 
Reject 2 22 20 4 >20% 

2171 5498 2047 505 <20% NCR 
Accept 492 1772 949 330 >20% 

1 10 26 1 <20% NCR 
Reject 6 35 34 2 >20% 

2165 5445 2005 486 <20% µNCR 
Accept 494 1772 937 325 >20% 

7 63 68 20 <20% µNCR 
Reject 4 35 46 7 >20% 

 

4. Results 
TI Data for 17 wafers from 5 different lots and a total 13 

879 chips is used. The average IDDQ was obtained by 
averaging 10 IDDQ readings for each chip. Figure 5 shows 
the distribution of NNR, NCR and mean NCR values. The 
thresholds for NNR, NCR and mean NCR are set at 
mean+3σ values shown in Table 2. The distribution of 
chips for these metrics is shown in Table 3. It indicates 

disparity between different metrics. Chips in each category 
are divided based on whether they are accepted or rejected 
by a metric. They are further subdivided depending on 
whether post-stress change in IDDQ was less or more than 
20%. NCR-based screening has the fewest false rejects and 
accepts. A tighter distribution of the mean NCR results in 
lower yield. 

The success of a spatial correlation-based method 
depends on the availability of highly correlated dice used 
for parameter estimation. In order to see the effect of the 
number of chips used for estimation, we divided the data 
based on the number of neighboring dice used for 
prediction that came from different groups. The distribution 
of chips based on this criterion is shown in Tables 4. In 
Table 4, Group ‘A’ means that all 8 neighboring chips came 
from group 1 and group 2. Group ‘B’ indicates that dice 
from group 1, 2 and 3 were used for 8 neighboring 
positions, group ‘C’ indicates that dice from groups 1 to 4 
were used and group ‘D’ means that dice from all five 
groups were used.  
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Figure 6. Number of false accepts for different methods. 
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Figure 7. Number of false rejects for different methods. 

Table 5. Defect Levels for Different Metrics. 

Metric A B C D All 
NNR 18.66 24.68 32.17 39.85 26.1 
NCR 18.47 24.37 31.67 39.52 26.3 

µNCR 18.51 24.52 31.76 40.12 25.8 
 



Figure 6 shows the number of false accepts for each 
method with varying number of neighbors. This value is 
computed as the percentage of defective chips out of all 
accepted chips (considering chips having more than 20% 
post-stress variation to be defective). It shows that all 
methods have similar defect levels. The defect levels 
increase as neighbors from longer distances are used for 
estimation. This could be because the dice at longer 
distances are not highly correlated to the reference die. 
When dice farther away are used, NCR screens defective 
chips slightly more effectively as it is uses maximum 
nonconformance to local neighborhood for screening chips. 

Figure 7 shows the number of false accepts for each 
method with varying number of neighbors. This value is 
computed as the percentage of good chips that were 
rejected by a method. NCR accepts slightly fewer chips as 
long-distance neighbors are used. As correlation fades for 
dice from different groups, this can result in more yield 
loss. 

 
Table 6. Yields for Different Metrics. 

Metric A B C D All 
NNR 99.55 98.83 97.93 98.21 98.7 
NCR 99.73 99.38 98.03 99.64 99.1 

µNCR 99.51 98.59 96.10 96.65 98.0 

Figure 8. Metric Sensitivity and DL/YL Parameter. 

In Figures 6 and 7 the group association of neighbors is 
not shown. In other words, 8 neighbors may come from 
different groups and need not be confined to group ‘A’ 
only. The disagreement among different metrics is 
relatively more for chips that are accepted and have less 
than 20% post-stress IDDQ deviation.  The metrics agree on 
“good” chips or chips that belong to the “core” population 
as estimated and actual values match for these chips. The 
disagreement occurs for outliers that are “hidden” in the 
core population as gross outliers alter properties of the 
distribution. A more sensitive metric like NCR can detect 
these chips. An alternate way to detect such outliers could 
be use of more resistant estimators [13]. Intuitively, NNR 
effectiveness can be improved if the median of median 
values is used [14]. 

The presence of outliers alters the tail of the 
distributions differently for different metrics as shown in 
Figure 5. The more relative a metric, the shorter the tail of 
the distribution. Thus, NNR results in a short-tailed 
distribution because it tends to average out the effect of 
gross outliers. On the other hand, these chips result in a 
long tail for the NCR metric. The mean NCR tends to have 
intermediate results. 

5. Conclusions 
Two schemes for wafer-level spatial estimation of fault-

free IDDQ were compared in this paper. Any relative 
parameter estimation scheme loses its accuracy when the 
estimator population is polluted by outliers. This situation is 
somewhat similar to Byzantine General’s problem [ 15]. 
Should one use fewer “good” estimators or more “average” 
estimators when the knowledge of “good” or “average” is 
absent a priori? Clearly adding more chips from the spatial 
neighborhood is useful as long as they provide a reliable 
estimate of the parameter being considered. Therefore, 
using neighbors from longer distances is beneficial only if 
the chips in the neighborhood used for estimation are 
correlated to the reference die. Inaccurate estimation results 
in yield penalty. However, when a metric like NCR is used, 
considering neighbors at longer distances is useful for 
detecting some subtle outliers that cannot be detected by 
NNR due to averaging effect. 

Whether one technique is preferred over other depends 
on the sensitivity requirements. A more sensitive methods 
can detect subtler outliers, probably at a higher cost of 
overkill. There exists a tolerance zone where both defect 
level (DL) and yield loss (YL) are acceptable as 
conceptually illustrated in Figure 8. In such case, either 
method is acceptable. Better quality goals can be achieved 
with NCR more easily than NNR. 

Due to their inherent reliance on statistical properties of 
the distribution, threshold setting issue remains for all these 
methods. An optimum threshold may be decided through 
empirical analysis or prior engineering judgment. 
Increasing variance in IDDQ values will limit the sensitivity 
of NCR/NNR methods. However, as long as the 
fundamental mechanisms that govern the variation are 
same, wafer-level spatial estimation will prove to be useful. 
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