
FedEx – A Fast Bridging Fault Extractor

Zoran Stanojevic
Dept. of Electrical Engineering

Texas A&M University
College Station TX 77843-3124

Tel: (979) 862-6610
Fax: (979) 847-8578

Email: zoran@cs.tamu.edu

D. M. H. Walker
Dept. of Computer Science

Texas A&M University
College Station TX 77843-3112

Tel: (979) 862-4387
Fax: (979) 847-8578

Email: walker@cs.tamu.edu

Abstract
Test pattern generation and diagnosis algorithms that

target realistic bridging faults must be provided with a
realistic fault list. In this work we describe FedEx, a
bridging fault extractor that extracts a circuit from the
mask layout, identifies the two-node bridges that can
occur, their locations, layers, and relative probability of
occurrence. Our experimental results show that FedEx is
memory efficient and fast.

1. Introduction
In order to remain competitive, integrated circuit

manufacturers must be able to handle customer demand for
faster and more complex designs brought to market faster.
This requires packing more and more transistors in a single
chip; greater chip complexity, smaller transistor
geometries and more interconnect layers. Such integrated
circuit designs are more sensitive to manufacturing
defects. This places a premium on high initial test
coverage and fast and accurate fault diagnosis. In order to
meet market windows, test sets must achieve high fault
coverage at the start of manufacturing. Manufacturers must
be able to quickly debug new products, and identify test
and reliability problems in customer returns. Given the
complexity of today’s designs, such tasks must heavily
rely on software tools to aid the engineer.

High real fault coverage [1] and accurate fault
diagnosis [2] are most efficiently achieved when the
software tools have a realistic list of the possible circuit
faults. Most defects cause electrical shorts within the same
layer or open vias between layers. Most shorts can be
modeled as a bridging fault. A number of software tools to
identify potential realistic faults within a circuit have been
developed [3][4][5][6][7][8][9][10][11]. These tools are
termed fault extractors. They analyze the mask layout to
determine what faults could realistically occur, given a
description of possible manufacturing defects. Defects are
assumed to occur randomly on the chip, with defects
following a size distribution, and either causing intralayer
or interlayer faults. An example of an intralayer fault is a
bridge between two adjacent metal1 lines. An example of
an interlayer fault is a short between overlapping
polysilicon and metal1 lines. A recent survey of fault
extractors describes their different features [12]. Some

tools such as VLASIC [3] attempt to provide an accurate
circuit model for complex bridges and opens. This is too
expensive for large circuits. The most common practice is
to identify two-node bridging faults. Open circuits are less
frequently extracted because the stuck-at fault model is
often a reasonably good model for their behavior.

Some fault extractors provide an unordered list of
possible faults, while others rank them based on their
relative likelihood of occurrence. This is computed using
the critical area and defect size distribution. The critical
area is the area of the chip where the center of a defect
must occur to cause a fault. The critical area is a function
of the defect size - the larger the defect, the larger the
critical area. The critical area between two adjacent wires
is shown in Figure 1. The critical area is usually weighted
by the defect size distribution to compute the weighted
critical area (WCA). Some tools use a surrogate for critical
area, such as length of parallel wire runs, that is correlated
to critical area, but cheaper to compute.
Metal Lines

D

Extra metal defect not causing a fault

Extra metal defects in locations to cause shorts

Critical Area for extra
metal defects of diameter D

Figure 1. Critical area between two wires
For a given fault (e.g. a bridge between two nets), there

could be several disjoint critical area regions at different
locations and on different layers. We term these fault sites.
We have found that on average there are about two fault
sites per intralayer bridging fault.

Catastrophic faults such as shorts and opens are caused
primarily by spot defects, that is, regions of extra or
missing material. In this work we restrict ourselves to
bridging faults caused by spot defects of extra material.
These are modeled as circular disks on different layers,
with a diameter distribution. The process disturbance
causing the defect is usually a three-dimensional particle,
but modern chemical mechanical polishing limits their
effect to primarily the mask layer in which they occur [13].

The exact computation of critical areas for typical
layouts is costly. This is primarily because the circular

defect model implies a Euclidean polygon expansion, as
shown in Figure 2 to compute the critical area between two
polygons. Each polygon is expanded by half the defect
diameter in a Euclidean fashion and intersected. The
intersection area is the critical area. A common
approximation is to assume a square defect and its
associated orthogonal polygon expansion, as shown in
Figure 3. Orthogonal expansions are relatively
inexpensive. Another alternative is to use a Voronoi
diagram of segments [14]. Another alternative is to use a
circular defect and sample the layout with a Monte Carlo
process to estimate the critical area. The drawback of a
Monte Carlo procedure is that large sample sizes are
required to ensure that faults with small critical area are
identified for those applications needing a nearly-complete
fault list. The computation of weighted critical areas adds
the further complication of computing the critical area as a
function of defect diameter, and then convolving that with
the defect diameter distribution. A Monte Carlo analysis
can simplify this since the defects can be drawn from the
diameter distribution.

Critical area

Net1

Net2

Figure 2. Euclidean polygon expansion

Critical area

Net1

Net2

Figure 3. Orthogonal polygon expansion
Although much prior work has been expended on exact

or near-exact critical area computations [12], in practice
there is little need for them. The defect diameter
distribution is poorly characterized, varies from factory to
factory, and changes over time. The fabricated chip
structures do not match the mask artwork due to process
variations and the limitations of the patterning process.
What is more important is ensuring that the more probable
faults are on the fault list. ATPG will likely not target all
possible realistic faults. Some fault extractors [9] use the
ranking information to keep only a most likely subset of
the faults. However in most designs there are a very large

number of similar-probability faults. The WCA uncertainty
is such that faults of similar WCA can be treated as equally
important, and there is no need to accurately compute
which fault has slightly higher WCA. In other words, the
fault list should be viewed as a ranked list of equivalence
classes, with faults of similar WCA within each class. We
previously showed that ranking information such as WCA
was not useful for diagnosis [2]. What is very important
for diagnosis is that all faults that could reasonably occur
be on the fault list. This is essential for quality assurance
failure or customer return parts, where diagnostic success
must be quickly achieved on that particular part.

An alternative to a special-purpose bridging fault
extractor is to use a coupling capacitance extractor. The
list of coupling capacitances can be used as an unordered
list of two-node bridging faults. Long, close parallel wire
runs have both higher capacitance and higher critical area,
so capacitance extractor rules can be used to target the
most probable bridging faults [15]. If the extractor is
sufficiently flexible, an approximate WCA can be
computed by replacing the capacitance extraction rules
with WCA extraction rules.

The advantage of using a capacitance extractor to
generate a bridging fault list is that the capacitance
extraction is part of the design flow, so no extra step is
needed. The drawback is that capacitance extractors reduce
their computational effort by making approximations, such
as lumping many small capacitance values together.
Hierarchical extractors may approximate the capacitance
of cells when computing the capacitance of global nets.
These approaches may be sufficient for obtaining a list of
the most probable faults, but preclude obtaining a nearly-
complete list of realistic two-node bridging faults.

The considerations above led us to develop a bridging
fault extractor with the following characteristics:
• Extract all two-node intralayer bridges. Modeling

multi-way bridges is too expensive for ATPG and
diagnosis tools, and our expectation is that most can
be tested and diagnosed by using all the two-node
bridges that make up a multi-way bridge. All bridges
to nets within a user-specified window around a net
are considered as bridge pairs, even if there are
intervening nets. So a three-way bridge will be
extracted as the three two-node bridges. The window
size is made large enough to consider all defect sizes
likely to occur. As discussed above, we need to extract
all bridging faults for diagnosis. Applications such as
ATPG may choose to keep only the most probable
bridges.

• Provide hooks to extract two-node interlayer bridges.
Our past experience is that intralayer bridges are more
important, so we targeted them first. We will discuss
interlayer bridges later in the paper.

• Compute approximate weighted critical area for each
bridge. As discussed above, exact WCA is not needed.
Since we are keeping all bridges, we do not need the
WCA to trim the fault list. It is only stored as a
parameter with each fault for later use. Our goal is to
estimate WCA to within 20% of the exact critical area.
We assume a 1/x3 defect diameter distribution.

• Compute approximate fault locations and layers. Two
nets can bridge at different fault sites - locations and
layers where the defect can cause the fault. This
information is required for diagnosis. Rather than
computing an exact critical area shape, we compute
the bounding box of the space between the bridged
nets on each layer. This is sufficient to localize a fault
in most cases.

• Trade WCA accuracy for speed and memory. The
diagnosis application driving this research has little
need for WCA accuracy. Of more importance is to
quickly obtain the complete fault list of a new chip.
The fault extractor should handle the largest designs in
reasonable time. Specifically we want to be able to
extract a 50-million transistor design in 10 CPU-hours
on a high-end workstation. If we assume about 20
flattened mask rectangles per transistor, that is a
billion rectangles. If a workstation executes one
billion instructions per second, we can execute no
more than 36 000 instructions per mask rectangle to
meet our performance goal.

Since our primary goal is to be able to handle the
largest designs on a large workstation overnight, we have
named our fault extractor FedEx. In the sections that
follow, we describe FedEx and our experimental results.
Section 2 provides a description of the FedEx system.
Section 3 provides experimental results on a number of
chip designs, and Section 4 concludes.

2. FedEx System
The FedEx system performs the following functions:

• Parse mask layout. The parser reads a hierarchical
Calma GDSII Stream or Caltech Intermediate Form
(CIF) layout file.

• Extract circuit topology using a technology file. The
netlist is extracted using the layout connectivity. The
rectangles on a net are labeled using the text labels
that intersect the rectangles on the same layer. The
technology file specifies connectivity and transistor
structure rules. Since we are extracting bridging faults,
we do not retain transistor extraction information.

• Identify fault sites. All nets within the user-specified
window are considered possible bridges.

• Compute the weighted critical area of each bridge
pair. This analysis can be omitted if it is not needed
for the application.

• Write fault sites to output file. As described below,
this step must merge net numbers together, and record
any equivalence information.

The information flow between these functions is shown
in Figure 4.

Parse Mask Layout

Extract Circuit

Identify Bridges

Compute WCA

Write Fault Sites

Fault sites
w/WCA per net

Fault sites
w/equivalent nets

Fault sites
per net

Labeled
rectangles

Y-sorted Labels
and rectangles

Figure 4. FedEx flow diagram
The fundamental design decision in FedEx is to start

with a hierarchical design description, but to process the
layout in a flat manner, and write bridging faults out in a
flat manner. Our past experience with hierarchical fault
extraction [4] is that the design must have a high degree of
regularity to gain significant performance benefits from
hierarchical analysis. Otherwise the overheads of handling
the design hierarchy eliminate most of the benefits.

Our target ATPG and fault diagnosis applications focus
on the logic part of a design. We assume test and diagnosis
of large memory arrays is handled separately, as is current
practice. There is relatively little layout regularity in most
logic designs, particularly those implemented in an ASIC
design style. The advantage of a flat analysis is that its
performance is independent of the design style. Rather
than concentrating on developing a complex hierarchical
algorithm, we instead have focused on developing a fast
and simple flat analysis.

We use a scanline algorithm [16] for both circuit
extraction and fault extraction, as shown in Figure 5. The
parser reads the hierarchical layout description, converts
polygons into rectangles, incrementally flattens the design,
and sorts the rectangles by their top y-coordinate. These y-
sorted rectangles enter the scanline where the circuit
extraction is performed. The labeled rectangles then enter
an array of bins where fault extraction is performed, and
then rectangles exit the system. Fault sites associated with
a net are written to the output file when the scanline passes
the bottom of the net.

Design Layout
Hierarchical format

Technology
file

 Parsing
input file

Sort by x-coordinate
and merge rectangles

 on the same scan-line

Merge nets on
different layers

Step size

Window
size

Calculate new
window

No

Yes Is the bottom of
the chip?

Write bridges

Bin
Insertion

End

Put in the buffer
and sort by top

coordinate

Is the top of
 rectangle on the

 scan line?

Extract
bridges

Calculate
critical area

Update
 bins

Update
 bridge lists

No

Yes

Figure 5. FedEx scanline algorithm
The memory consumption of the scanline approach is

relatively small. Only a moving window of geometry is
kept, which is)(NO in the size for a chip with N
rectangles. Only information about nets that intersect the
scanline must be kept. When the scanline has passed below
a net, that net can be discarded since there can be no
further bridges to it. The number of local nets crossing the
scanline will be relatively constant, following)(NO
behavior as with rectangles. The number of global nets
will slowly rise towards the middle of the chip and then
slowly fall. These are a small percentage of all nets. The
only place where the flattened design is present all at once
is in the bridge fault sites written to the output file.

2.1. Parser
The parser reads the mask layout into memory, flattens,

and sorts it by y-coordinate. Polygons are converted into
rectangles using a stairstep algorithm that horizontally
slices any non-orthogonal section of the polygon. The user
specifies the maximum vertical step size for this slicing
process. The step must be small enough that two
neighboring polygons do not touch after the conversion
process, which is typically half the minimum spacing.
Usually a smaller step size is chosen in order to improve
the accuracy of the WCA computation. It is possible to use
a separate step size for each mask layer, so that large
numbers of rectangles are not created where design rules
are coarse. In practice most polygons appear on lower
mask layers, which have similar design rules, so using one
step size for all mask layers results in little penalty.

The parser stores cell definitions as unsorted linked
lists. Once parsing is complete, the bounding boxes of all
cell definitions are recursively computed by computing the
bounding box of the geometry and cell instances contained
within the definition. These bounding boxes are stored
with each definition.

The layout is flattened and sorted by rectangle top y-
coordinate as follows:

1. The top level cell instance is placed into a priority
queue using the top y-coordinate. The cell
definition bounding box is transformed to global
chip coordinates first.

2. The rectangle, label or cell instance at the top of
the queue (highest y-coordinate) is removed.

3. If it is a rectangle or label, it is given to the
scanline processing code.

4. If it is a cell instance, the cell definition is opened,
and its contents (rectangles and cell instances) are
transformed to global coordinates and inserted into
the queue. Transformation of labels includes
prefixing it with the global pathname.

5. Steps 2-4 are repeated until the queue is empty.

This sorting procedure takes advantage of the design
hierarchy to reduce the sorting cost and memory
consumption. If the hierarchy is a binary tree organized by
y-coordinate, then the cost is only O(N) for N flat
rectangles since the hierarchy already provides the sorting
structure. In the worst case the cost is O(NlogN), when one
cell instance contains all chip rectangles. In a standard cell
design style, the rectangles on most of the metal layers are
described in a flat manner. However these layers are not as
dense in terms of rectangles as the lower mask layers, so
even in ASIC designs the priority queue greatly reduces
the sorting cost. In very large ASIC designs, as well as
custom designs, modules are placed and routed separately,
and then assembled, which provides further hierarchy to
reduce the sorting cost. Our experiments show that overall
the parsing, flattening, and sorting cost is less than 8% of
the total FedEx execution time.

2.2. Circuit Extraction
Circuit extraction is performed using the scanline. The

scanline is a scalar value that keeps track of the y-
coordinate of rectangles currently being processed.
Associated with the scanline are linked lists of rectangles,
two for each mask layer - new and active. The procedure is
as follows:

1. Receive geometry. A rectangle or label comes from
the parser in y-sorted order.

2. Insert into new list. If the rectangle or label top y-
coordinate is the same as the scanline value, it is
inserted into the new list on the appropriate layer
using an insert sort based on the left x-coordinate.
If the top y-coordinate is below the scanline, the
rectangle or label is saved in the sorted buffer list,
and processing of the new list halts.

3. The new list is merged into the active list. The
active list contains all rectangles that intersect the
scanline. The idea of using a new and active list is
that the superlinear cost of sorting is paid only for
the smaller active list, and then the linear cost of
merging is paid in the larger active list. If the
inserted rectangle would overlap a neighboring
rectangle, they are coalesced into one larger
rectangle that retains the number of the smaller net
(all nets are assigned a unique identifying
number). Since the two rectangles can be of
different height, the rectangle with the lower
bottom coordinate is sliced off so that its height
matches that of the shorter rectangle. This sliced
off rectangle is placed in the buffer list. If a
rectangle does not intersect any other, it is
assigned a new net number. Layers that form
transistors are processed in order to split active
regions that are separated by a transistor channel.

4. The label and via lists are processed. They are
used to attach labels to nets and merge conducting
layers together. The first label encountered on each
net is recorded. Other labels could be recorded, but
the assumption is that this is handled in the LVS
application that maps the bridging fault list to the
netlist for use in ATPG or fault diagnosis. The
circuit extraction does not make use of the net
labels, in that it does not assume that two nets with
the same label are connected. Only geometry can
connect two net segments together.

5. The scanline is moved down. It stops at the highest
rectangle bottom y-coordinate, or the top of the
buffer list, whichever is highest. A sorted list of
rectangle bottom y-coordinates is used to quickly
determine the new scanline value. Any rectangles
that are now above the scanline are removed from
it (and passed to the bins discussed below). All
labels on the scanline are discarded. Any
rectangles in the buffer list that now coincide with
the scanline are moved to the new list.

The above procedure is repeated until all geometry is
exhausted. If there are a finite number of scanline stops per
rectangle, then the cost is linear in the number of
rectangles, except for the insertion sort in step #2. In
practice there are a relatively small number of rectangles in
the new list, so the x-sorting cost is relatively small. The
cost is further reduced by skipping layers that did not have
rectangle or label insertions between scanline moves. If the
sorting cost became unacceptable, there are a number of
O(1) time data structures that can be used to speed it up.

The hooks to extract directly overlapping interlayer
critical area are located in extraction step #4, since the
problem of identifying which nets overlap one another is
essentially the same problem as determining whether a
conductor overlaps a via. There is only a small additional
cost to check for overlaps with adjacent conductor layers.
The primary cost of interlayer bridges is in inserting them
into the net data structures. The reason is that a net on one
layer tends to be perpendicular to nets on adjacent layers,
so the number of interlayer bridges will typically be much
larger than the number of intralayer bridges.
2.3. Fault Extraction

The rectangles leaving the scanline are inserted into an
array of bins, shown in Figure 6. There are two rows of
bins, each with height and width equal to the user-
specified fault extraction window size Smax. This is in
effect the maximum defect size considered for bridges.
The bin processing procedure is as follows:

1. As the scanline moves down, the bottom row of
bins accumulates rectangles until it reaches full
height (the scanline is more than Smax below the
top row of bins).

2. Fault extraction is performed on the geometry
within the bottom row of bins, including analysis
of bridges to geometry in the top row of bins.

3. The geometry in the top row of bins is discarded.
4. The geometry in the bottom row of bins is moved

to the top row with a pointer swing.

Scan line

Smax

Scan
direction

Scan processing direction

Figure 6. Fault extraction bins

Each bin contains a linked list for each layer pointing
to all rectangles that intersect the bin on that layer. Thus
rectangles within the bin array have pointers to them from
each bin they intersect. Rectangles that still intersect the
scanline but protrude into the bins are pointed to as well.

Fault extraction is performed for each bin in the lower
row. For each layer, each rectangle on that list is
considered. It is checked against all the other rectangles on
that layer within its bin, and the five neighboring bins (left,
right, and three above). This means that rectangles as far
apart as max22 S are considered. The analysis for
rectangles that are within this distance is shown in Figure
7. For each rectangle, only rectangles to the left, upper left
corner, top, and upper right corner are considered for
bridges. This is to avoid double-counting critical areas as
the rectangles are moved from the bottom to the top row of
bins.

Net1

Net2

s

Net3

Net5

Sx

Sy

l

Figure 7. Critical area calculation using a geometrical
method

In looking for other rectangles, the algorithm considers
pairs, without considering intervening rectangles. These
critical areas cannot occur in practice, but provide the two-
node approximation for multi-way bridges. So given three
adjacent parallel lines A, B, and C, bridges A-B, B-C, and
A-C will be reported, even though the latter should be A-
B-C.

The weighted critical area is calculated using a
geometrical method. Geometry corresponding to each of
the nets is inflates by the half Smax. The intersection region
defined by the bloated rectangles of two or more nets (the
shaded areas) corresponds to the critical area, as shown in
Figure 7. The spacing s and length l are used to compute
the weighted critical area in Equation (1). This equation is
used for the top and left critical areas. This equation
assumes a 1/x3 defect size distribution. The 2

0x term is the
user-supplied proportionality constant for the WCA.

()
�

−=
max

3
2

0

S

s

ldxsxA
xx (1)

The corner critical areas are computed with Equation
(2), using the sx and sy values.

()()
()
�

−−
=

max

,max
3

2

0

S

ss

yx

yx

dx
sxsx

A
xx (2)

As shown in Figure 6, rectangles on the same net will
abut against another. Those parts of a rectangle edge that
directly abut another rectangle on the same layer (same
net) are not considered when computing critical area. Since
rectangles are divided by horizontal slices, this only
applies to the top and bottom edges of rectangles.

Equation (1) underestimates the critical area in that it
does not include the “end effect” regions, such as to the
left and right of the top critical area in Figure 7. This is not
included because at each spacing change between two
wires, this would result in overlapping end regions. An
approximate value can be computed [8][9]. We have
developed a number of approximation techniques, but felt
that the improvement in accuracy was not worthwhile. The
error is relatively small for longer parallel wire runs on
upper metal layers. The error is largest for short wires
within cells. In keeping with our goals, we only need to
know that the former have large WCA and the latter do
not. Therefore we did not include the end approximation in
our computations.

Equation (2) overestimates the critical area due to
diagonally adjacent nets. This is the same overestimate
obtained through standard orthogonal expansion. Normally
these are small critical areas, and so not significant. The
exception is when a polygon is converted to rectangles,
resulting in a net with many nearby corners. We analyze
each corner separately, so the result is much more critical
area than would be the case with polygons with smooth
diagonal edges. Again, these normally only occur within
cells, not the upper metal layers.

The result of the fault extraction for each bin is a set of
fault sites, including net pair, bounding box of the critical
area, the layer, and the WCA.

Interlayer bridges can be added to the analysis by
extending the above algorithm to have the rectangle under
consideration in the center bin check against rectangles in
the bins on adjacent layers, out to some distance Imax, the
maximum lateral interlayer bridge distance. The WCA
calculation would have to add the overlapping critical
areas identified during the circuit extraction.

When a row of bins is about to be discarded, the net
data structures are checked to see if any will fall outside
the top row of bins and should be discarded. The bridges
associated with these nets are printed. This first requires
checking all the net number equivalences due to merging
of nets on the scanline. In some cases bridges will be
discarded since they bridge to the same net. The
incremental merging scheme speeds scanline processing,
but the final net scan is currently implemented as an O(N2)
algorithm. This can result in a significant overhead when
long nets pass the scan line.

2.4. Postprocessing
In order to minimize memory consumption, the FedEx

algorithm writes out the bridges for a net as soon as the net
has passed the scan line. Each entry in the bridge file
contains the two bridged net numbers, critical area, bridge
layer, and bridge bounding box. The label associated with
the net number is written to a label file.

It can happen that two net segments start and then
merge at a lower y-coordinate on the chip. Since we
relabel the merged nets with the smaller of the two net
numbers, all the bridges to the relabeled net that have
already been written to the bridge file are incorrect. This is
handled by recording net equivalence information with the
net. When the net is completed, this equivalence
information is written to an equivalence file.

In order to generate the list of all two-node bridges in
terms of unique net numbers or labels, it is necessary to
first process the equivalence information. We currently do
this with a combination of C programs and shell scripts.
For a list of several million bridges, this processing takes a
few minutes. We do not include this time in the
experimental results that follow since the amount of
processing is highly dependent on the application using the
bridge fault list.

3. Experimental Results
FedEx has been implemented in 14 000 lines of C

code. A set of university, research laboratory, and
industrial circuit designs were extracted using a Sun
UltraSPARC 5/360 with 256 MB of memory. The design
styles ranged from array to full custom to ASIC. The
university and research laboratory designs used two and
three metal layers. The extraction window size was fixed
at 10 λ for all designs, where λ is defined as half the drawn
transistor gate length. This distance considers defects large
enough to bridge several adjacent wires together. The step
size for polygon to rectangle conversion is set at 2/3 λ.
Bridges on the metal, polysilicon and diffusion layers were
considered.

The results are shown in Table 1. The memory
consumption is not linear in transistor count. It is primarily
a function of the design complexity in terms of the
hierarchy and how many polygons must be converted to
rectangles. The first five designs are fairly regular and
their layouts contain only rectangles. The Mosaic design
has parts that are very regular, but also contains a large flat
microcode ROM. The controller is implemented using an
ASIC design style in a four-metal, 180 nm technology. The
standard cells contain polygons, so the design has both flat
global wiring as well as many rectangles generated from
polygon conversion. This is more typical of the fault
extraction behavior on a current industrial design.

Note that for the two larger designs, the process size
exceeded the main memory size. This did not cause
significant paging since the working set is relatively small.
Most of the memory is used to store the design data

structures in the parser, and these are accessed relatively
slowly compared to scanline processing.

Table 1. FedEx Experimental Results
Circuit # Trans. Mem

(MB)
CPU

Time (s)
Fault Sites

Hopfield 22K 32 31 71 223
Frame 64K 35 80 243 787
Serial 70K 18 66 194 319
Array 85K 36 125 352 166
Cross 164K 75 375 285 382
Mosaic 1200K 645 625 648 979
Controller 500K 305 4260 3 613 586

The CPU time is primarily correlated with the number
of bridging fault sites extracted, which is a function of the
layout density relative to the design rules. But it is also a
function of the number of unique y-coordinates (scanlines)
and windows (chip y dimension divided by window size)
processed.

There is no common set of fault extraction benchmarks
or extraction criteria, so it is not possible to directly
compare the performance of FedEx with other fault
extractors. For example, the L2 circuit in [9] is 8% larger
than the controller circuit. Compared to [9], FedEx takes
13% of the CPU time on a machine that is 60% of the
speed, so overall FedEx appears about 12 times faster. But
[9] is doing more work since it extracts interlayer bridges,
computes intralayer bridge WCA more accurately, and
only keeps the 30 000 most probable bridges. Most
importantly, the value of Smax used is not specified, and
CPU time is very sensitive to this.

Due to the different circuit design styles and densities,
it is not possible to draw any conclusions from Table 1
about the asymptotic complexity of the FedEx algorithm.
The primary concern is the behavior of the scanline
processing. To study this, a chip that consists of a row of
two copies of the controller circuit was extracted. Since we
wanted to avoid significant paging, the circuits were
extracted on a HP 9000 Model V2200, which has a larger
physical memory. The results are shown in Table 2. Larger
circuits could not be run due to virtual memory limits. The
memory usage grows sublinearly since the fixed overheads
(e.g. design description) do not grow. This would be true
of any hierarchical design with some regularity. The
runtimes are approximately linear in the circuit size, so the
O(N2) factor associated with the current scanline
implementation is relatively small.

Table 2. FedEx Scaling Results
Circuit Memory (MB) CPU Time (s)
Controller 320 5000
2 x Controller 493 10888

On the controller chip, FedEx processed 10 743 000
flattened mask rectangles in 4260 CPU-sec on an

UltraSPARC 5/360, or about 140 000 instructions per
rectangle. This is extracting about 7 fault sites and 3.5
unique faults per transistor, which is a relatively high fault
density. Based on this we are within a factor of 4 of our
ultimate performance goal in terms of instructions
executed per mask rectangle, and that while FedEx cannot
yet handle the largest designs overnight, it can handle them
within a few days.

4. Conclusions
In this work we have developed the FedEx two-node

bridging fault extractor. By trading accuracy for time, and
using efficient data structures and algorithms, FedEx is
able to perform circuit and fault extraction at high speed
with reasonable memory consumption. Our experimental
results show that it is very competitive with other fault
extractors.

We have integrated FedEx into the Knights
Technology Merlin database as part of the Computer-
Aided Fault to Defect Mapping (CAFDM) project [2]. In
the Merlin version, the circuit extraction has already been
performed, the parser is replaced by database region
queries, and critical area calculation is not performed since
it is not needed for the diagnosis task.

The Merlin version of FedEx has been run on a 4M-
transistor circuit implemented in six-metal 180 nm
technology. The chip has 1M nets, of which 300 000 are
between cells, and 25M bridge fault sites. A 20M transistor
chip is also being extracted using this system. This version
of FedEx is currently much slower than the version
described here due to the way it was interfaced to the
database. We expect it to be of similar performance to our
parser-based FedEx when it is fully optimized.

We would like to speed up FedEx by at least another
factor of 4. The netlist merging when a net is complete
currently uses an O(N2) algorithm. This netlist merging
takes almost half the execution time of the controller chip.
Scan line manipulation can be improved by using a O(1)
bin structure, rather than a linked list. This ensures that the
runtime behavior on very large chips is linear. The parser
memory consumption can be significantly reduced.
Multiple copies of some structures are kept, and structures
could be freed immediately after they are used. This is the
majority of the memory consumption in the benchmarks.
The combination of these improvements should achieve
our goal of extracting a chip with 50 million logic
transistors (e.g. the IBM POWER4 microprocessor [17])
overnight on a large workstation.

FedEx is being implemented on a 16-CPU shared
memory parallel processor. The parser runs on one
processor and provides data to the scanline processing,
which is done on the remaining 15 processors. Net
merging and I/O is done on the first processor. Given the
balanced load and independent nature of the bin
processing, we expect a nearly linear speedup.

Acknowledgements
This research was funded in part by International

SEMATECH under project DRTB002. This project has
benefited from the continual guidance of the program
manager, Fred Lakhani. This project has also benefited
from many interactions with Hari Balachandran of Texas
Instruments.

References
[1] V. R. Sar-Dessai and D. M. H. Walker, “Resistive Bridge Fault

Modeling, Simulation, and Test Generation”, IEEE Int’l Test Conf.,
Atlantic City, NJ, Sept. 1999, pp. 596-605.

[2] Z. Stanojevic, H. Balachandran, D. M. H. Walker, F. Lakhani, S.
Jandhyala, K. Butler and J. Saxena, “Computer-Aided Fault to
Defect Mapping (CAFDM) for Defect Diagnosis”, IEEE Int’l Test
Conf., Oct. 2000, pp. 729-738.

[3] H. Walker and S. W. Director, “VLASIC: A Catastrophic Fault
Yield Simulator for Integrated Circuits,” IEEE Trans. CAD, Oct.
1986, pp. 541-556.

[4] D. D. Gaitonde and D. M. H. Walker, “Hierarchical Mapping of
Spot Defects to Catastrophic Faults -- Design and Applications”.
IEEE Trans. on Semi. Manuf., May 1995, pp. 167-177.

[5] P. K. Nag and W. Maly, “Hierarchical Extraction of Critical Area
for Shorts in Very Large ICs”, IEEE Int’l Workshop on Defect and
Fault Tolerance in VLSI Systems, Lafayette, LA, Nov. 1995, pp. 19-
27.

[6] A. L. Jee and F. J. Ferguson, “Carafe: An Inductive Fault Analysis
Tool for VLSI Circuits”, IEEE VLSI Test Symposium, Atlantic City,
NJ, 1993, pp. 92-98.

[7] F. M. Goncalves, I. C. Teixeira and J. P. Teixeira, “Realistic Fault
Extraction for High-Quality Design and Test of VLSI Systems”,
IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, Paris, France, 1997, pp. 29-37.

[8] S. T. Zachariah, S. Chakravarty, and C. D. Roth, “A Novel
Algorithm to Extract Two-Node Bridges”, Design Automation
Conference, June 2000, pp. 790-793.

[9] S. T. Zachariah and S. Chakravarty, “A Scalable and Efficient
Methodology to Extract Two Node Bridges from Large Industrial
Circuits”, IEEE Int’l Test Conf., Atlantic City, NJ, Oct. 2000, pp.
750-759.

[10] C. H. Ouyang, W. A. Pleskacz and W. Maly, “Extraction of Critical
Areas for Opens in Large VLSI Circuits”, IEEE Trans. CAD, Vol.
18, Feb. 1999, pp. 151-162.

[11] HPL, Inc., SAFARI System, 2001.
[12] D. M. H. Walker, “Critical Area and Fault Probability Prediction”,

in Integrated Circuit Manufacturability: The Art of Process and
Design Integration, J. Pineda de Gyvez and D. K. Pradhan, ed.,
IEEE Press, 1998.

[13] H. Balachandran and D. M. H. Walker, “Improvement in SRAM-
Based Failure Analysis Using Calibrated IDDQ Testing”, IEEE
VLSI Test Symposium, Princeton, NJ, April 1996, pp. 130-136.

[14] E. Papadopoulou and D. T. Lee, “Critical Area Computation Via
Voronoi Diagrams”, IEEE Trans. CAD, Vol. 18, April 1999.

[15] C. E. Stroud et al, “Bridging Fault Extraction from Physical Design
Data for Manufacturing Test Development”, IEEE Int’l Test Conf.,
Atlantic City NJ, Oct. 2000, pp. 760-769.

[16] A. Gupta, “ACE - A Circuit Extractor”, VLSI Document V105,
Dept. of Computer Science, Carnegie Mellon University, June 1982.

[17] C. Anderson, J. Petrovich, J. Keaty and G. Nusbaum, “POWER4
Physical Design”, IEEE Int’l Solid-State Circuits Conf., San
Francisco, CA, Feb. 2001.

	Abstract
	Introduction
	FedEx System
	Parser
	Circuit Extraction
	Fault Extraction
	Postprocessing

	Experimental Results
	Conclusions
	Acknowledgements
	References

