

K Longest Paths Per Gate (KLPG) Test Generation for Scan-Based Sequential Circuits

Wangqi Qiu, Jing Wang, D. M. H. Walker, Divya Reddy+, Xiang Lu*, Zhuo Li*, Weiping Shi*, Hari Balachandran+

Dept. of Computer Science
Texas A&M University

College Station TX 77843-3112
Tel: (979) 862-4387
Fax: (979) 847-8578

Email: walker@cs.tamu.edu

*Dept. of Electrical Engineering
Texas A&M University

College Station TX 77843-3124
Tel: (979) 458-0093
Fax: (979) 845-2630

Email: wshi@ee.tamu.edu

+Texas Instruments, Inc.
12500 TI Boulevard MS 8761

Dallas TX 75243
Tel: (214) 480-3783
Fax: (214) 480-3449

Email: {d-reddy2, harib}@ti.com

Abstract
To detect the smallest delay faults at a fault site, the

longest path(s) through it must be tested at full speed.
Existing test generation tools are inefficient in
automatically identifying the longest testable paths due to
the high computational complexity. In this work a test
generation methodology for scan-based synchronous
sequential circuits is presented, under two at-speed test
strategies used in industry. The two strategies are
compared and the test generation efficiency is evaluated
on ISCAS89 benchmark circuits and industrial designs.
Experiments show that testing transition faults through the
longest paths can be done in reasonable test set size.

1. Introduction
Delay test has been investigated for many years. At-

speed test significantly increases the delay fault coverage
in industrial applications. The transition fault model [1],
which is the simplest delay fault model, is usually used in
these applications. However, the transition fault model
targets large delay faults which cause all the sensitizable
paths through the fault site to be slow. Recent research
shows that resistive opens are one of the major defect
types which cause delay faults [2], and that small delay
faults cannot be neglected [3]. To detect the smallest delay
fault at a fault site, the longest sensitizable paths through it
must be tested. But (longest) path delay fault test
generation is much more expensive than transition fault
test generation, because a transition fault test can be
composed by pairing stuck-at-0 and stuck-at-1 vectors [4]
and transition fault test generation for sequential circuits
has been extensively investigated [5][6][7].

Recently some research significantly decreased the cost
of path delay fault test generation [8][9] and these
methodologies are able to integrate some path selection
criteria, such as the longest paths through each line.
However, they assume the circuits are combinational, i.e.
there is no dependence between the two test vectors or
between two bits within a vector. These methodologies
cannot be applied to sequential circuits directly. The
reason is that the commonly-used design-for-testability
(DFT) structures, such as muxed scan, rarely support
combinational enhanced-scan, which allows the two
vectors to be independent but requires more silicon area

and introduces more delay. Therefore, a new automatic test
pattern generation (ATPG) tool for path delay faults in
sequential circuits has to be developed, to target practical
DFT structures.

The ATPG was developed by extending a path
generation algorithm for combinational circuits [9] to
handle scan-based synchronous sequential circuits. This
tool is able to generate K longest paths through the input
and output pins of each gate (KLPG) for both slow-to-rise
and slow-to-fall faults. In this work test generation is
limited to K=1 because it is assumed the industry cannot
afford a test set much larger than a transition fault test set.
At speed testing that utilizes scan, often called AC scan,
uses two common approaches, “launch-on-shift” and
“launch-on-capture”. The constraints from these
approaches result in sequential false paths [10] which are
combinationally testable. The delays of the longest
combinational and sequential testable paths through each
line are compared in the experiments.

The remainder of the paper is organized as follows.
Section 2 introduces the two practical test approaches to
apply at-speed test in a scan-based circuit. Section 3
describes the test generation algorithm using the two
approaches. Section 4 includes experimental results on the
ISCAS89 benchmark circuits and industrial designs.
Section 5 concludes with directions for future research.

2. Scan-Based At-Speed Test Approaches
In low-cost automatic test equipment (ATE), the test

speed is usually much slower than the functional speed of
the circuit under test. This is not a problem to test stuck-at
and large delay faults, but small delay faults may escape.
Therefore at-speed test is preferred to increase the realistic
delay fault coverage.

However, due to the low-cost ATE speed limitation,
the at-speed tests primarily in use in industry are built-in
self-test (BIST) and AC scan. Evidence has shown that
BIST can achieve very high fault coverage for stuck-at and
transition faults [11], but it has low probability to sensitize
enough critical paths, e.g. the longest path through each
line. On the other hand, functional tests running at full
speed are becoming unattractive due to the high cost of
development and application [12]. Therefore, this paper
focuses on high-quality delay test generation using existing
scan designs.

In this paper the muxed scan design is assumed, with a
scan enable signal selecting either serial scan data or
functional logic data. The flip-flops are clocked with the
system clock. Two scan-based at-speed test
methodologies, which have found increasing usage in
industry, will be briefly introduced in the next two
sections.
2.1. Launch-on-Shift (Skewed Load)

The procedure of the launch-on-shift (or skewed load
[13][14]) test approach is:
1. The circuit is set to scan mode. The first test vector is

scanned into the scan chains using the slow scan clock,
and the values are set on primary inputs (PIs).

2. The second test vector is obtained by shifting the scan
chain by one bit. Usually the PIs do not change values
due to the constraints from low-cost ATEs.

3. The circuit is set to the functional mode by flipping the
scan-enable signals and pulsing the system clock to
capture the circuit values in the flip-flops. The values
on primary outputs (POs) are captured if necessary.

4. The circuit is set to scan mode and the values in the
scan chains are scanned out using the slow scan clock.
This step can be overlapped with step 1.
The advantage of this approach is that fast test

generation methodologies for combinational circuits can
be applied without many modifications. Scanned flip-flops
are considered primary inputs in the ATPG for
combinational circuits, and the adjacent scan bit
dependencies must be added to the existing ATPG. These
constraints may result in some paths being untestable.

The disadvantage of this approach is that the scan
enable signals must operate at full speed. In addition, many
of the sensitizable paths under the launch-on-shift
constraints are sequential false paths, i.e. these paths are
not sensitizable in functional mode, so some redundant
faults would be detected.
2.2. Launch-on-Capture (Functional Justification)

The procedure of the launch-on-capture (or functional
justification, broadside [15]) test approach is:
1. Same as the launch-on-shift approach step 1.
2. The circuit is set to functional mode. A dummy cycle is

inserted if the scan-enable signal cannot operate at full
speed or the system clock frequency is very high, so
that the launch clock pulse width is too large. Figure
1(a) shows the clock waveform. For comparison,
Figure 1(b) shows the clock waveform if the time is
sufficient for the scan enable signal to propagate. In
this approach, the launch cycle is kept identical to the
shift cycle with respect to period, rising edge, and pulse
width.

3. The system clock is pulsed twice. At the first clock
pulse, the second test vector is derived from the first
vector. At the second clock pulse, the test is performed
and the output values are captured in the scanned flip-
flops. The values on POs are captured if necessary.

4. Same as the launch-on-shift approach step 4.

Last scan-in
shift cycle

Launch cycle Capture cycle

Last scan-in
shift cycle

Dummy cycle Launch Capture

(a)

(b)
Figure 1. Launch-on-capture clock waveforms.

The advantage of this approach is that it does not
require the scan enable signal to operate at full speed. And
the sensitizable paths under the launch-on-capture
constraints are also sensitizable in functional mode, unless
the first vector represents an illegal state.

Though the launch-on-capture approach is more
promising and practical for industrial use [12], the launch-
on-shift approach is also included in this work because it
may have lower data volume, it may detect some delay
faults that are not functional, and test generation only
requires combinational test.

3. Test Generation
The test generation algorithm was developed from a

fast ATPG for combinational circuits [9]. In this section,
the path generation engine is introduced, and the
constraints from the launch-on-shift/capture approach are
applied to eliminate sequential false paths from the
combinationally testable path set, and the time frame
expansion method is used for the launch-on-capture
approach.
3.1. KLPG Path Generation Engine

Figure 2 is the algorithm used in the KLPG path
generation engine [9]. In this paper, a launch point (of a
path) is a primary input or scanned flip-flop, and a capture
point is a primary output or a scanned flip-flop. In the
preprocessing phase, static timing analysis computes the
maximum delay from each gate to capture points, without
considering any logic constraint. This value is termed the
PERT delay or STA delay. In the path generation phase,
partial paths are initialized from launch points. A partial
path is a path which originates from a launch point but has
not reached any capture point. A value called esperance
[16] is associated with a partial path. The esperance is the
sum of the delay of the partial path and the STA delay
from its last node to a capture point. In other words, the
esperance of a partial path is the upper bound of its delay
when it becomes a complete path, which reaches a capture
point.

In each iteration of the path generation phase, the
partial path with the maximum esperance value is extended
by adding one gate. If the last gate of the partial path has
more than one fanout, the partial path splits. Then the

constraints to propagate the transition on the added gate,
such as non-controlling side input values required under
the robust [17] or non-robust [18] sensitization criterion,
are applied. Direct implications [16] are then used to
propagate the constraints throughout the circuit. A direct
implication on a gate is one where an input or output of
that gate can be directly determined from the other values
assigned to that gate. Figure 3 shows some examples of
direct implications on an AND gate. The values in boxes
are implied from the existing values. If there are any
conflicts, the whole search space which contains the partial
path is trimmed off. If the partial path does not reach a
capture point, some false path elimination techniques [9]
are applied to prevent it from growing to a false path. Then
its esperance value is updated and it is inserted back into
the partial path store. If a partial path becomes a complete
path, final justification is performed to find a vector.
Details of final justification are provided in Section 3.4.
This process repeats until enough longest testable paths are
generated. Because the longest path through a fault site is
very possibly the longest path through other fault sites
along the path, fault dropping is performed when a new
path is generated.

Pass justification?

Enough paths?

Delete the (partial) path

End

Y

Start Preprocessing

Initialize partial paths from
launch points

Pop the partial path with the
maximum esperance

Extend the partial path with
one more gate

Apply constraints and perform
direct implications

Conflict? Complete path?

Apply false path
elimination techniques

Update esperance

Insert in the (sorted)
partial path store

N
N

Y

Y
N

N

Y

Figure 2. Path generation algorithm.

X
0

0
1
1

1
1
0

0

(a) (b) (c)
Figure 3. Examples of direct implications [9].

In this work, the goal is to generate the K longest paths
through the input and output pins of each gate for both
slow-to-rise and slow-to-fall faults, termed KLPG patterns.
So the search space is limited to the fanin and fanout cones

of the fault site and the test generation does not stop until
the K longest paths for both faults are generated.
3.2. Implications on Scanned Flip-Flops

Direct implications can be performed on scanned flip-
flops as well as regular gates to detect most local conflicts
and eliminate sequential false paths. Since local conflicts
are the fundamental reason for false paths in most circuits
[16], performing direct implications as much as possible
can identify most false paths and significantly speed up the
test generation process.

If the launch-on-shift approach is used, the logic values
on neighboring scanned flip-flops are dependent on each
other. For example, in Figure 4, the logic value of cell A in
the first vector is the same as that of cell B in the second
vector. The relation between cell B and C is the same.
Therefore, if there is a rising transition assigned to cell B,
direct implications would try to assign a logic 1 to cell A in
the first vector and a logic 0 to cell C in the second vector,
and propagate the new assignments throughout the circuit.
If there are any conflicts, the partial path is a sequential
false path under the launch-on-shift constraints. It is
assumed that the scan chain design cannot be modified to
reduce the dependence, such as inserting dummy cells
between the scanned flip-flops.

A

scan-in

B

C

scan-out

a a′

b b′

c c′

Combinational
Circuit

Figure 4. Implications on scanned flip-flops.

If the launch-on-capture approach is used, dependence
exists between the two vectors. Even if the circuit has a
pipeline structure, in which the two vectors are
independent, the structure can also be seen as the general
structure shown in Figure 4. The conversion is shown in
Figure 5. Thus the second vector is the output of the
combinational circuit, derived from the first vector,
excluding the primary input and output bits. In other
words, V2=C(V1), where V1 and V2 are the two vectors and
C is the logic of the combinational circuit. For example, if
it is assumed that a testable path has a rising transition
launching from cell A and a rising transition captured on
cell B, in Figure 4, then for the first vector, output a′ must
be a logic 1 (then it becomes the value for input a in the
second vector); and for the second vector, input b must be
a logic 0 because it is derived from the first vector. Then
more direct implications can be performed from a′ and b.

S1

S2 C2 C1

S3 S2 S1

C2

C1

S3

Figure 5. A pipeline structure.

3.3. Constraints from Non-Scanned Memories
If the circuit is not full scan, the non-scanned flip-flops

may or may not be initialized after the first vector is
scanned in. Logic simulation of the test setup sequence and
scan procedure is done before the ATPG is performed. If a
non-scanned flip-flop gets initialized by its set/reset signal
during the test setup procedure, the constant value is used
as a known value in the first vector during the ATPG.
Logic values of the set/reset signals of each flip-flop are
also checked by logic simulation, to ensure the set/reset
signals are in their off state during the scan and test
procedure. Clocks are checked in the same way. Flip-flops
not controlled by the system clock are considered
uncontrollable. Industrial designs also contain embedded
memories, whose values cannot be easily initialized during
the test for the logic. Extensive research [19][20] has been
done to solve the initialization problem. However, there
may still be many non-scanned flip-flops which cannot be
initialized. These bits are considered “uncontrollable” in
the test generation. In commercial tools, embedded
memories are usually considered “black-boxes” as well.

 0 1 x u 0/u 1/u x/u
0 0 0 0 0 0 0 0
1 0 1 x u 0/u 1/u u
x 0 x x 0/u 0/u x/u x/u
u 0 u 0/u u 0/u u 0/u

0/u 0 0/u 0/u 0/u 0/u 0/u 0/u
1/u 0 1/u x/u u 0/u 1/u x/u
x/u 0 u x/u 0/u 0/u x/u x/u

Figure 6. Truth table of an AND gate.
The algebra used in this work includes seven values:

logic 0/1, x (unknown/unassigned), u (uncontrollable), 0/u
(0 or uncontrollable), 1/u (1 or uncontrollable) and x/u
(unknown or uncontrollable). At the beginning of test
generation, the lines from the non-scanned memories are u
and all the other lines are x. Both u and x have “don’t
know” values but x may be assigned a value in the test
generation process (assuming controllable). Figure 6
shows the truth table of a 2-input AND gate. For example,
if one input is x and the other is u, the output is 0/u because
if the input with x is assigned a logic 0 the output becomes
0, but if this input is assigned a logic 1 the output becomes
uncontrollable. Before the test generation, logic simulation
is performed throughout the circuit to reduce the number
of x’s. Figure 7 shows two examples, assuming M1 is a

non-scanned memory cell and M2 is a scanned flip-flop.
The logic values assigned by simulation are shown. If the
conventional 3-value algebra is used, all the lines are
assigned x’s.

Using this 7-value algebra significantly speeds up the
test generation because it divides unknown values into
controllable and uncontrollable categories. In the example
shown in Figure 7(a), since the logic value on line n3 can
never be a logic 1, all the paths through line n4 are false.
Thus the test generation stops growing partial paths at line
n4 and all the gates in the fanout cone of line n4 are pruned.
If the conventional 3-value algebra is used, the test
generation may have to generate all the paths through line
n4 and find there is no test pattern for any of them.
Moreover, by looking at the logic values on line n5, it can
be learned that it is impossible to intentionally make a
transition on this line because logic 1 is not achievable,
therefore both slow-to-rise and slow-to-fall faults on this
line are untestable. Since all the paths through line n4 must
contain line n5, it can also be known that both delay faults
on line n4 are untestable. In summary, many faults can be
proven untestable by simple analysis, before the test
generation is performed, and non-solution search space is
more efficiently pruned during the test generation.

Figure 7(b) shows another example. When a partial
path reaches gate g2, the value of the second vector on side
input n3 is set to logic 0 (non-controlling value, for both
robust and non-robust test requirement). Then direct
implications are performed backward. The value of the
second vector on line n2 is set to 0 and further direct
implications for the first vector can be performed from M2
(see the previous section). Thus conflicts can be found
earlier. If the conventional 3-value logic is used, direct
implications stop at gate g1. Some conflicts may be hidden.

g1

M1

g2 M2 n2

n1
n3

n4
n5

u

x
0/u

x
0/u

(a)

g2

g1
M1

M2 n2

n1
n3

n4
n5

u

x
0/u

x
x/u

(b)
Figure 7. Application of 7-value algebra.

3.4. Final Justification
A PODEM [21] based justification process is

performed to find a vector pair when a complete path is
found. Because most conflicts are eliminated by direct
implications, this process is likely to succeed. Since the

two vectors are dependent, whenever a decision (a logic
value on any bit in either vector) is made at a primary
input or scanned flip-flop, direct implications have to be
performed to trim the search space. For the launch-on-shift
approach, both vectors can be justified in this way.

For the launch-on-capture approach, because the
second vector is derived as the circuit response to the first
vector, one time frame expansion is used. In Figure 8, both
the circuit and scan chains are duplicated. The first vector
V1 can be generated within one time frame, but since the
second vector V2=C(V1′), the goal is to find a satisfying
V1′. Because V1 and V1′ are identical excluding the “don’t
care” bits, in the justification process there must be no
conflicts between V1 and V1′, i.e. a bit is logic 1 in V1 but 0
in V1′ (it is consistent if one of them is a “don’t care”).
Similarly, whenever a decision is made on any bit in either
vector, direct implications must be performed to keep the
logic assignments on any line in the two identical circuits
consistent.

C C′

scan chains V1 V2 V1′

Figure 8. Time frame expansion for final justification

using launch-on-capture.

4. Experimental Results
The proposed ATPG has been implemented in Visual

C++ and run on Windows 2000 with a 2.6 GHz Pentium 4
processor and 2 GB of memory. Experiments are
performed on the full scan versions of the largest ISCAS89
benchmark circuits and two industrial designs, controller1
and controller2, which are partial scan. Muxed scan is
used in all the designs. The nominal SDF model is used for
computing path delays for controller2. The unit delay
model is used for the ISCAS89 circuits and controller1
because SDF models are not available.

4.1. Robust Test
Table 1 shows the results for generating the longest

robustly-testable path [17] for each fault, under the launch-
on-capture and launch-on-shift constraints. It is assumed
that at each fault site there are slow-to-rise and slow-to-fall
delay faults. The number of faults is twice the number of
lines in a circuit, and the same as the number of transition
faults. Column 3 shows the upper bound of detectable
faults. This number is less than the total number of faults,
because it is also assumed that the primary inputs cannot
change their logic values, and the primary outputs are
masked (not observed), due to the constraints from low-
cost ATEs. Therefore no transition can happen at some of
the fault sites and some transitions are not observable.
Columns 4 and 5 show the number of primary inputs and
scan flip-flops for each circuit. Control signals, such as
clock and scan enable, are added into the standard
ISCAS89 circuits, as primary inputs. It is assumed that the
ISCAS89 circuits are full scan and there is only one scan
chain for each circuit, in random order. The industrial
design controller1 contains 4 scan chains and controller2
contains 16 scan chains. Both designs are partial scan.
There are 38 non-scanned memory cells in controller1 and
5 557 in controller2. Columns 6-8 show the results for the
launch-on-capture approach and columns 9-11 for the
launch-on-shift approach. Columns 6 and 9 show the
number of paths generated by the ATPG. Before test
compaction, each generated path has a test pattern. The
number of patterns after compaction is shown in columns 7
and 10. The test patterns are compacted by a simple greedy
static compaction algorithm, in which each new pattern is
combined with the first compatible existing pattern.
Columns 8 and 11 show the CPU time. It can be seen that
dealing with uncontrollable signals from non-scanned flip-
flops and embedded memories significantly increases the
CPU time. However, without using the 7-value algebra, the
test generation for controller1 did not finish within 24
hours and resulted in many more aborts.

Table 1. Robust test generation summary.

Launch-on-Capture Launch-on-Shift
Circuit # Lines

UB #
Detectable

Faults

Primary
Inputs

Scan
Flip-Flops # Paths

Generated
Test

Patterns
CPU Time

(m:s)
Paths

Generated
Test

Patterns
CPU Time

(m:s)
s1423 1 423 2 420 20 74 395 215 0:13 666 191 0:07
s1488 1 488 1 310 11 6 192 87 0:01 206 81 0:01
s1494 1 494 1 324 11 6 193 85 0:02 204 79 0:01
s5378 5 378 7 564 38 179 1 799 406 0:07 1 110 94 0:04
s9234 9 234 16 166 39 211 2 376 790 3:59 3 608 681 2:52
s13207 13 207 22 886 65 638 3 220 909 2:25 6 469 1 635 1:03
s15850 15 850 24 338 80 534 2 637 472 2:35 5 828 645 1:08
s35932 35 932 59 246 38 1 728 9 762 36 14:31 12 194 44 8:15
s38417 38 417 74 926 31 1 636 14 905 949 14:21 17 554 655 2:46
s38584 38 584 59 454 41 1 426 9 723 526 11:20 21 047 679 4:28
controller1 86 612 130 692 38 3 503 12 275 2 275 130:10 19 626 657 102:41
controller2 1 966 204 1 815 222 201 57 352 493 779 70 670 132 hrs* 714 116 43 289 57 hrs

*A commercial ATPG tool took >48 hours for transition fault test generation using launch-on-capture for controller2.

0

20

40

60

80

100

s14
23

s14
88

s14
94

s53
78

s92
34

s1
32

07

s1
58

50

s3
59

32

s3
84

17

s3
85

84

con
tro

lle
r1

con
tro

lle
r2

Circuit

Fa
ul

t C
ov

er
ag

e
(%

) Launch-on-Capture

Launch-on-Shift
Both

Enhanced-Scan

Figure 9. Fault coverage (percentage of robustly tested faults) comparison.

Figure 9 shows the fault coverage (percentage of faults

which have at least one path robustly tested) using the
launch-on-capture or launch-on-shift approach only, or
both. The data in column 3 in Table 1 is used as the total
number of detectable faults. For most circuits, the launch-
on-shift approach can detect more faults robustly than the
launch-on-capture approach, except for circuit s5378, in
which the launch-on-capture approach does better. The
fault coverage assuming combinational enhanced-scan is
shown for comparison. In combinational enhanced-scan,
two independent vectors can be stored in the scan chain, so
the fault coverage for this method is an upper bound.
Again in this mode it is assumed that the primary inputs
hold their logic values from the first vector to the second
vector, and the primary outputs are masked. Thus the
coverage loss is purely due to the launch-on-capture and
launch-on-shift constraints and uncontrollable values.
Although the faults that the launch-on-capture approach
cannot detect must be sequentially redundant in functional
mode, the test patterns are still useful because these
sequentially redundant faults may cause reliability
problems.

Figure 10 is the comparison for robustly testable path
length using the launch-on-capture and launch-on-shift
approaches, for circuit s15850. The faults are indexed so
that the length of the longest testable path for each fault,
under the launch-on-capture constraints, is in increasing
order. The longest robustly testable path for each fault
assuming combinational enhanced-scan is also generated
for comparison. Because the primary inputs hold and the
primary outputs are masked, some faults have no coverage
even if the circuit uses combinational enhanced-scan. For
most faults, the maximum path length using the launch-on-
shift approach is close to the upper bound, but this is not
true for the launch-on-capture approach. All the other
circuits have similar plots except for circuit s5378. This
phenomenon indicates that the constraints from the launch-

on-capture approach are stronger than the constraints from
the launch-on-shift approach for most circuits.

Figure 10. Path length comparison.

4.2. Comparison to Transition Fault Tests
According to the combined delay fault model [22][23],

a delay fault can be caused by the combination of a spot
defect and process variation. A spot defect can be modeled
as a slow-to-rise or slow-to-fall (local delay) fault at a
certain site and process variation can cause small
distributed delay fault along a path through the spot defect.
For a local delay fault, our test strategy is to test the
longest paths with a rising or falling transition at the fault
site, so the smallest combination of local and distributed
delay faults can be detected. In short, the fault space of this
delay fault model is the same as that of the transition fault
model, but it models smaller delay faults. Process variation
can be handled by testing multiple (K) longest paths
through each fault site, not only one. However, to keep the
test set size comparable to the transition fault test set size,
K is set to one in this work, and the resulting test set is
termed a KLPG-1 test set.

The KLPG-1 test set is constructed as follows: If a
fault (slow-to-rise or slow-to-fall) has robustly testable

paths, the longest one is selected, because the delay fault
can always be detected regardless of the delay of the other
gates or interconnects in the circuit, though this may not be
the longest sensitizable path. The results for robust tests
are shown in the previous section. In Figure 9 it is shown
that the fault coverage for robust test is low using the
launch-on-capture approach. This indicates that many
faults have no robust test. To construct a test set whose
quality is higher than the transition fault test, these faults
must be tested.

If a fault does not have a robust test, the longest
restricted non-robustly testable path is selected, if it exists.
The path selection has the following restrictions:

1. The path must be non-robustly testable [18];
2. It must have the required transition at the fault site;
3. The local delay fault must be detected at some

capture points, if there is no other delay fault.
In short, if a test is a restricted non-robust test for a

fault, it must also be a transition fault test.

M1 M2n1

n3

n4
n5

n2

Figure 11. Restricted non-robust test.

For example, path n1-n2-n3-n5 is a non-robustly testable
path in Figure 11. It is a valid non-robust test for line n2
and n3. However, it is not a valid non-robust test for line n5
because the glitch (or transition) may not happen if the
delay of path n1-n4 is greater than the delay of path n1-n2-n3
(violation of restriction 2). Similarly, it is not a valid non-
robust test for line n1 because the slow-to-rise fault may
not be detected even if there are no other delay faults
(violation of restriction 3).

M1 M2

n2 n1 n3

Figure 12. Transition fault test.

If a fault has no non-robust test either, a transition fault
test which can detect a small local delay fault is generated.
In other words, this test has higher quality than the
traditional transition fault test because the traditional one
assumes large local delay and propagates the fault through
any path (usually a short path). In our test generation, this
case usually happens when the local delay fault can only
be activated or propagated through multiple paths, such as
the slow-to-fall fault on line n2 in Figure 12. The test
quality is determined by the length of the shortest paths in
the activating or propagating path set. The longer the
shortest path is, the smaller the local delay fault that can be
detected. The best transition fault test, in terms of the
detected local delay fault size, cannot be guaranteed to be
generated by our tool but it should be better than the
traditional transition fault test. If no high quality test can

be found, a transition fault test is generated. This happens
for fewer than 0.05% of the faults in our test cases.

The KLPG-1 test set is composed of these 3 types of
path delay fault tests, as shown in Figure 13. It has the
same transition fault coverage as the commercial transition
fault test set, but has higher quality, in terms of the
detected delay fault size.

Robust test

Non-robust test

Transition fault test
Figure 13. Test composition.

Table 2 shows the comparison of test set size (number
of test patterns) between KLPG-1 test sets and the
commercial transition fault test sets, using the launch-on-
capture approach. Columns 2-4 show the number of
statically compacted robust/non-robust/ transition fault test
patterns in KLPG-1 test sets. Column 5 shows the total
number of compacted KLPG-1 patterns. If longest paths
are not required, some KLPG-1 patterns can be dropped
but the transition fault coverage remains the same. Column
6 shows the number of transition fault effective patterns,
which detect unique transition faults, out of the KLPG-1
test sets. The number of transition fault test patterns
generated and dynamically compacted by the commercial
tool is listed in column 7.
Table 2. Comparison of test size (Launch-on-capture).

Circuit Robust Non-
Robust

Tran-
sition Total Effect-

ive
Comm-
ercial

s1423 215 35 12 262 208 95
s1488 87 40 2 129 119 102
s1494 85 41 2 128 116 101
s5378 406 2 2 410 341 194
s9234 790 69 6 865 697 465
s13207 909 32 117 1 058 612 382
s15850 472 31 4 507 397 231
s35932 36 3 1 39 37 68
s38417 949 51 1 1 001 724 365
s38584 526 443 50 1 019 945 528
controller1 2 275 825 311 3 411 2 600 1 900
controller2 70 670 1 856 4 025 76 551 16 284 11 702

For most circuits, the KLPG-1 test sets are 2-3x larger
than the commercial transition fault test sets. The KLPG-1
test set for circuit s35932 is smaller, but the KLPG-1 test
set for controller2 is significantly larger. On the other
hand, for controller2, the number of patterns which have
unique transition fault detection is not much larger than the
commercial transition fault test set. This phenomenon
indicates that many transition faults in controller2 are
easy-to-detect but testing them through the longest paths
results in many more necessary assignments and lower
compaction rate. This is likely due to the fact that the
average path contains 40 gates.

0

20

40

60

80

100

s14
23

s14
88

s14
94

s53
78

s92
34

s1
32

07

s1
58

50

s3
59

32

s3
84

17

s3
85

84

con
tro

lle
r1

con
tro

lle
r2

Circuit

Fa
ul

t C
ov

er
ag

e
(%

)

Robust

Robust + Non-Robust

Robust + Non-Robust
+ Transition

Figure 14. Robust/non-robust/transition fault coverage of KLPG-1 test sets (launch-on-capture).

Figure 14 shows the robust/non-robust/transition fault

coverage of the KLPG-1 test sets, using launch-on-capture.
For example, for circuit s1423, 60.66% of the faults are
robustly tested, and 19.01% of the faults are non-robustly
only tested. If the launch-on-shift or combinational
enhanced-scan approach is used, adding a few transition
fault test patterns to the robust test sets results in the same
transition fault coverage as the commercial transition fault
test sets, for most ISCAS89 circuits. But this is not true for
the launch-on-capture approach. The strong constraints
from this approach prevent many faults from having
robustly testable paths. For the industrial designs
controller1 and controller2, robustly detected faults are
even fewer due to the constraints from non-scanned
memory cells. Figure 14 shows that many more faults are
only non-robustly detected or can only be detected through
multiple paths (detected by the transition fault test only).
For example, in circuit s5378, 354 faults are non-robustly
detected but not robustly detected. The number of non-
robust test patterns included in the test set is 2. This does
not indicate that these 2 test patterns detect the 354 faults,
because the 460 robust test patterns also non-robustly
detect some other faults by luck. Because the unit delay
model is used for the ISCAS89 circuits in the experiments,
many paths are of equal length and any of the longest
restricted non-robustly testable paths can be the best non-
robust test for the fault. Thus, the 2 non-robust test patterns
for this circuit can be seen as a cleanup phase.
4.3. Compaction

Though KLPG-1 test has higher quality, in some cases
a larger test set is not affordable. Then trade-offs between
test quality and test size are necessary in compaction.

There are two factors which affect the test quality. One
is the number of transition faults which are covered by the
test set. The other is the path delay through the transition
fault sites [23]. For a fault which has long sensitizable
paths, testing a short path is not able to detect a small delay

fault. So a long path whose delay is close to the longest
sensitizable path through the fault must be tested.
Therefore, the patterns which test long paths are “must
keep” patterns. For a fault which has only short paths,
relative to the critical paths, the coverage loss can be
neglected if one path, not necessarily the longest one, is
tested. The reason is that the probability of a delay fault
large enough to cause the longest short path to fail but
small enough to cause the short path to pass is small. Thus,
for these faults, transition fault tests are good enough if a
small test size is required. Given a maximum test set size,
first the “must keep” patterns, which test long paths, are
selected. Then the remaining patterns are selected based on
the number of faults they detect. Most of the remaining
transition faults can be detected by randomly filling the
don’t care bits in the selected patterns.

If the test size is fixed at 6 000 for circuit controller2,
and all the paths whose delay exceeds 85% of the longest
sensitizable path are kept, 3.02% of the non-redundant
transition faults are not detected, assuming the commercial
tool detects all non-redundant transition faults. This
indicates that the transition fault coverage curve must have
a long tail. The average care bit density of the compacted
test set is 10.2% before randomly filling. Experiments
show that if more long paths (with delay >75% of the
longest sensitizable path) are kept, 3.05% of the non-
redundant transition faults become undetected (an
additional 0.03%). Trade-offs between transition fault
coverage and path delays can be made accordingly.

5. Conclusions and Future Work
We have proposed a KLPG test pattern generation tool

for scan-based synchronous sequential circuits, using the
launch-on-shift and launch-on-capture at-speed test
approaches. The generated test patterns can be applied to
the commonly-used scan designs, and at-speed test can be
performed using low-cost automatic test equipment. A 7-
value algebra has been developed to handle non-scanned

flip-flops and embedded memories whose logic values
cannot be initialized by the scan operation. Experiments
have shown that this algebra significantly speeds up the
test generation procedure.

Experiments have shown that for most circuits, the
launch-on-capture approach results in stronger constraints
and tighter dependence between the two vectors in a test
pattern, than the launch-on-shift approach. The test quality
using the launch-on-shift approach is close to the upper
bound, in terms of the maximum path delay through each
fault site. However, the launch-on-capture approach can
eliminate most of the sequentially redundant faults in
functional mode [24].

If the launch-on-shift or combinational enhanced-scan
approach is used, adding a few transition fault test patterns
to the robust test sets results in the same transition fault
coverage as the commercial transition fault test sets, for
most ISCAS89 circuits. However, due to the strong
constraints from the launch-on-capture approach, robust
tests alone do not achieve high transition fault coverage.
We have constructed KLPG-1 test sets which include the
robust/non-robust/transition fault test patterns for each
fault and have the same transition fault coverage as the
commercial transition fault test sets. Since KLPG-1 test
sets test long paths through each fault site, smaller delay
faults must be detected, compared to the commercial
transition fault tests. We are currently evaluating our test
sets on real chips to quantify this benefit.

This work is being extended to handle circuits which
have more complicated timing features, such as clock
gating and multi-cycle paths.

Acknowledgements
This research was funded by the Semiconductor

Research Corporation under contract 2000-TJ-844 and the
National Science Foundation under contract CCR-
0098329.

References

[1] Z. Barzilai and B. K. Rosen, “Comparison of AC Self-Testing

Procedures,” IEEE Int’l Test Conf., Philadelphia, PA, Oct. 1983, pp.
89-94.

[2] B. R. Benware, R. Madge, C. Lu and R. Daasch, “Effectiveness
Comparisons of Outlier Screening Methods for Frequency
Dependent Defects on Complex ASICs,” IEEE VLSI Test Symp.,
Apr. 2003, pp. 39-46.

[3] R. R. Montanes and J. P. Gyvez, “Resistance Characterization for
Weak Open Defects,” IEEE Design & Test of Computers, vol. 19,
no. 5, Sept. 2002, pp. 18-25.

[4] J. Waicukauski, E. Lindbloom, B. K. Rosen and V. S. Iyengar,
“Transition Fault Simulation,” IEEE Design & Test of Computers,
vol. 4, no. 5, Apr. 1987, pp. 32-38.

[5] K. T. Cheng, S. Devadas and K. Keutzer, “Delay-Fault Test
Generation and Synthesis for Testability Under a Standard Scan
Design Methodology,” IEEE Trans. on Computer-Aided Design,
vol. 12, no. 8, Aug. 1993, pp. 1217-1231.

[6] K. T. Cheng, “Transition Fault Testing for Sequential Circuits,”
IEEE Trans. on Computer-Aided Design, vol. 12, no. 12, Dec. 1993,
pp. 1971-1983.

[7] K. T. Cheng, “Test Generation for Delay Faults in Non-Scan and

Partial Scan Sequential Circuits,” IEEE/ACM Int’l Conf. on
Computer Aided Design, Santa Clara, CA, Nov. 1992, pp. 554-559.

[8] M. Sharma and J. H. Patel, “Finding a Small Set of Longest
Testable Paths that Cover Every Gate,” IEEE Int’l Test Conf.,
Baltimore, MD, Oct. 2002, pp. 974-982.

[9] W. Qiu and D. M. H. Walker, “An Efficient Algorithm for Finding
the K Longest Testable Paths Through Each Gate in a
Combinational Circuit,” IEEE Int’l Test Conf., Charlotte, NC, Sept.
2003, pp. 592-601.

[10] T. J. Chakraborty and V. D. Agrawal, “Effective Path Selection for
Delay Fault Testing of Sequential Circuits,” IEEE Int’l Test Conf.,
Washington, DC, Nov. 1997, pp. 998-1003.

[11] M. P. Kusko, B. J. Robbins, T. J. Koprowski and W. V. Huott,
“99% AC Test Coverage Using Only LBIST on the 1GHz IBM
S/390 zSeries 900 Microprocessor,” IEEE Int’l Test Conf.,
Baltimore, MD, Oct. 2001, pp. 586-592.

[12] J. Saxena, K. M. Butler, J. Gatt, R. Raghuraman, S. P. Kumar, S.
Basu, D. J. Campbell and J. Berech, “Scan-Based Transition Testing
– Implementation and Low Cost Test Challenges,” IEEE Int’l Test
Conf., Baltimore, MD, Oct. 2002, pp. 1120-1129.

[13] J. Savir, “Skewed-Load Transition Test: Part I, Calculus,” IEEE
Int’l Test Conf., Baltimore, MD, Sept. 1992, pp. 705-713.

[14] S. Patel and J. Savir, “Skewed-Load Transition Test: Part II,
Coverage,” IEEE Int’l Test Conf., Baltimore, MD, Sept. 1992, pp.
714-722.

[15] J. Savir and S. Patel, “Broad-Side Delay Test,” IEEE Trans. On
Computer-Aided Design, vol. 13, no. 8, Aug. 1994, pp. 1057-1064.

[16] J. Benkoski, E. V. Meersch, L. J. M. Claesen and H. D. Man,
“Timing Verification Using Statically Sensitizable Paths,” IEEE
Trans. on Computer-Aided Design, vol. 9, no. 10, Oct. 1990, pp.
1073-1084.

[17] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in Logic
Circuits,” IEEE Trans. on Computer-Aided Design, vol. 6, no. 9,
Sept. 1987, pp. 694-701.

[18] G. L. Smith, “Model for Delay Faults Based Upon Paths,” IEEE
Int’l Test Conf., Philadelphia, PA, Oct. 1985, pp. 342-349.

[19] W. T. Cheng and T. J. Chakraborty, “Gentest: An Automatic Test
Generation System for Sequential Circuits,” IEEE Computer, vol.
22, no.4, Apr. 1989, pp. 43-49.

[20] T. M. Niermann and J. H. Patel, “HITEC: A Test Generation
Package for Sequential Circuits,” ACM/IEEE European Design
Automation Conf., Amsterdam, The Netherlands, Feb. 1991, pp.
214-218.

[21] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits,” IEEE Trans. on Computers, vol. C-
30, no. 3, Mar. 1981, pp.215-222.

[22] W. Qiu, X. Lu, Z. Li, D. M. H. Walker and W. Shi, “CodSim - A
Combined Delay Fault Simulator,” IEEE Int’l Symp. on Defect and
Fault Tolerance in VLSI Systems, Boston, MA, Nov. 2003, pp. 79-
86.

[23] W. Qiu, X. Lu, J. Wang, Z. Li, D. M. H. Walker and W. Shi, “A
Statistical Fault Coverage Metric for Realistic Path Delay Faults,”
IEEE VLSI Test Symp., Napa Valley, CA, Apr. 2004, pp. 37-42.

[24] X. Liu and M. S. Hsiao, “Constrained ATPG for Broadside
Transition Testing,” IEEE Int’l Symp. on Defect and Fault
Tolerance in VLSI Systems, Boston, MA, Nov. 2003, pp. 175-182.

