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Abstract 
This paper proposes a new methodology for estimating the 
upper bound on the IDDQ of defect free chips by using wafer 
level spatial information.  This can be used for IDDQ 
pass/fail limit setting.  This methodology is validated using 
SEMATECH data.  Such a methodology accounts for the 
change in IDDQ due to process variations across wafers and 
reduces false rejects resulting in yield loss.  Typical 
scenarios in using this approach are discussed.  The results 
are compared with traditional methods. 

1. Introduction 
CMOS circuits consume very little power when the 

inputs are stable, as both p-type and n-type transistors do 
not conduct simultaneously.  Thus the quiescent current in 
CMOS circuits (denoted by IDDQ) is typically low.  Any 
appreciable increase in the quiescent current, therefore, 
indicates the likely presence of a defect (e.g. a bridging 
fault).  IDDQ testing has been successfully employed to 
screen defective ICs or ICs having reliability hazards [1,2].  
In the deep sub-micron (DSM) era, however, the leakage 
current is increasing and it has become difficult to 
distinguish between higher current due to a defective chip 
and a high IDDQ process corner [3,4].  This paper discusses a 
new approach for defining the pass/fail threshold based on 
information about neighboring dice on a wafer.  This 
approach was validated using SEMATECH data1.  This 
paper is organized as follows.  In section 2, we describe the 
problem of setting the pass/fail limit for IDDQ and discuss 
the motivation to solve this problem.  In section 3 we 
discuss the philosophy behind using neighboring die 
information. Section 4 details the methodology of using 

such information and some particular cases that are 
encountered.  Section 5 presents the results observed for 
SEMATECH data.  The last section concludes the paper.  

                                                 
1 This data comes from the work of the Test thrust at 
SEMATECH, Project S-121 on Test Methods Evaluation. The 
results and analysis presented here are our own and do not 
necessarily represent the views of SEMATECH or its member 
companies. 

2. Motivation 
IDDQ testing has been a very effective test method.  It 

offers high fault coverage with a small set of test vectors 
[5].  The traditional approach has been to define a 
maximum permissible value for IDDQ, called “IDDQ 
Threshold”, Ith.  All chips having a vector with IDDQ higher 
than Ith are considered likely to be defective and are either 
rejected or subjected to burn-in test.  All chips that have 
IDDQ lower than Ith are said to have passed the IDDQ test.  
The IDDQ test when combined with a voltage test and/or 
speed test provides an effective way of separating defective 
chips from the good ones [6]. 

F au lt-free  IC s F au lty  IC s

ID D Q

N
o.

 o
f o

cc
ur

re
nc

es

T h re sh o ld  (I th)

 

µ g oo d µ fa u lty

A B

 
Figure 1: Typical IDDQ distributions 

As transistor geometries are scaled down, the leakage 
current increases exponentially [3].  As the normal value of 
IDDQ increases, it becomes difficult to distinguish faulty 
chips from the good ones.  This problem is further 
worsened by an increase in die-to-die, lot-to-lot and wafer-
to-wafer variations in IDDQ.  A typical distribution of IDDQ 
values is shown in Figure 1.  There are dice that pass IDDQ 
test but are defective (region A in Figure 1) and dice that 
fail IDDQ test but are good (region B in Figure 1).  While 
rejecting a die that passes all other tests but IDDQ (region B) 



causes yield loss, letting a die pass just because it has 
passed IDDQ test (region A) can result in a customer return.  
Therefore, semiconductor manufacturers need to define 
metrics for IDDQ pass/fail decisions very carefully.  

16% failed all tests

9% failed only 
IDDQ test

5% passed  IDDQ 
but failed other test

 61% passed all 
tests

9% failed IDDQ 
and one more test

 

Figure 2: SEMATECH test result breakdown 

The SEMATECH experiment was conducted to 
evaluate the relative effectiveness of functional, stuck-at, 
IDDQ and delay tests. The test vehicle used was an IBM 
graphics controller chip.  It was a fully complementary 
CMOS design of approximately 116K ASIC standard cells 
with effective and drawn channel lengths 0.45 µm and 0.8 
µm, respectively [7].  A sample of 18 466 chips was tested 
at wafer and package level [6].  For each chip a total of 195 
IDDQ measurements were taken.  If any of these readings 
exceeded a threshold of 5 µA, the die was considered an 
IDDQ-fail.  This IDDQ threshold did not necessarily represent 
a good manufacturing limit.  The breakdown of the test 
results of these dice is shown in Figure 2.   As shown, out 
of 18 466 dice, 3040 (16%) failed all the tests at wafer 
probe.  Of the remaining 15 426 dice, 11 263 (61%) passed 
all the tests and 1689 (9%) failed only IDDQ test, 1619 (9%) 
failed IDDQ and at least one more test and only 855 dice 
(5%) failed other than IDDQ test at the wafer level.  The 
relationship among test failures is shown in Figure 3.  
Notice that a high percentage of dice are IDDQ-only fails.   

After wafer probe, a sample of all dice were packaged, 
tested and then subjected to six hours of burn-in and tested 
again.  We consider a die that tested good before packaging 
to be good even if it failed after packaging. This result can 
be attributed to a packaging defect.  Of the IDDQ-only failed 
dice at wafer probe, 1511 (89%) failed only IDDQ test after 
burn-in, while only 47 dice (3%) failed at least one more 
test.  The post burn-in results are not available for the 
remaining dice.  This clearly indicates that rejecting a die 
based on a static threshold IDDQ test can result in 
considerable yield loss.  This justifies the need of setting an 
appropriate value of the current threshold (Ith) to minimize 
yield loss as well as test escapes. 

Various approaches have been suggested to solve the 
IDDQ limit-setting problem [8].  They either follow a model-
based approach [9,10,11] or an empirical approach [12].  
The basic idea is to reduce the variance of the IDDQ 
distributions of good and faulty chips so as to reduce the 
overlapping area between them.  This is to make the defect 
manifest itself by increasing the signal to noise ratio (SNR) 
of the IDDQ measurement. 
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Figure 3: SEMATECH failed chip relationships 

The current signature approach [13] relies on arranging 
all IDDQ values in increasing order.  It is suggested that the 
presence of a defect should result in a “step” in the current 
signature, instead of a gradual change as in the case of a 
good IC.  To be effective, this approach needs an 
appreciable number of measurements.  Unfortunately, IDDQ 
is a slow testing method. Thus, it is not practical to take 
many measurements for each die unless a special sensor is 
used [14]. 

Delta-IDDQ takes the difference between two adjacent 
IDDQ values [15].  It is observed that per-die ∆IDDQ has 
smaller variation than the original measurements.  This 
scheme is further improved in [16]. The ∆IDDQ technique is 
observed to be more effective than traditional IDDQ test [17]. 

The current ratio technique [18] relies on the idea that in 
spite of the variation in IDDQ, the ratio of the maximum and 
minimum IDDQ values should remain the same for all chips.   

A statistical clustering method has been reported in [19].  
This method clusters chips using IDDQ measurements.  It is 
suggested that good and defective chips will be clustered 
separately.  The threshold value can then be refined by 
using the cluster data.  

3. Using Neighboring Die Information 
It is known that defects tend to appear in clusters.  Thus 

a die that passes all the tests and is surrounded by defective 
dice on a wafer is more likely to be defective (i.e. a test 
escape) than a die which is surrounded by good dice.  It was 
suggested [20,21] that the probability of failure of a die 
could be related to the test results of its neighboring dice on 
the wafer. The Wafer Oriented Test Evaluation (WOTE) 
technique was validated using SEMATECH data [22]. We 
propose a methodology to determine the IDDQ pass/fail limit 



by measuring IDDQ values of the neighboring dice.  A 
simple scheme uses the average of the IDDQ values of the 
neighbors [23].  This approach is expected to give a higher 
threshold if many neighbors are defective and have elevated 
IDDQ values.  To give less weight to the outliers a better 
scheme would be to use the median IDDQ values.  A 
variation of the ∆IDDQ scheme may be employed to take the 
difference between IDDQ readings of the center die and its 
neighbors. Another possible method is to use X-Y 
information and estimate the gradient of IDDQ in this region 
of the wafer.  Estimating the process gradient in local wafer 
regions has been shown to improve the prediction of 
microprocessor clock speeds [24, 25].  This method is 
described in the next section. 

4. Limit Setting Approach 
There are eight neighboring dice for a non-edge die on a 

wafer.  For each fully functional die in the SEMATECH 
data, we define a 3-D plane for each IDDQ vector using X 
and Y coordinates on the wafer and IDDQ value as the Z-
coordinate. The plane is formed using linear regression 
using the least squares fit method [26].  The details are 
provided in Appendix A.  The center die readings are not 
used while forming the plane to eliminate bias. Also, 
typically in a practical test environment IDDQ data is not 
available for functional fails.  Therefore dice that failed a 
voltage test are not used for plane formation.  Figure 4 
shows readings for a wafer as projections on the XY plane.  
Notice that some areas of the wafer have high frequency 
spatial variation.  The dice having extremely high IDDQ (e.g. 
several mA) are gross outliers.  These gross outliers are 
eliminated using a statistical technique described later.  
Figure 5 shows these IDDQ projections after gross outliers 
are eliminated.  Notice that appreciable high frequency 
spatial variation still remains.  The projection off the graph 
near the center of the plane is for a die (called die B below) 
that has IDDQ of more than 2 µA but less than 5 µA.  If a die 
has IDDQ considerably higher than its neighbors (i.e. a high-
frequency spike) it is likely to be defective.  On the 
contrary, if a die has very low IDDQ compared to its 
neighbors (a negative spike) it is probable that all the 
neighbors are defective.  This scenario is discussed later. 

The use of spatial information gives us insight to 
understand the impact of process variations on IDDQ and can 
reduce test escapes.  For example, consider the wafer 
signature shown in Figure 6 (where readings of all dice on a 
wafer for a vector are arranged in ascending order) for the 
same readings shown in Figure 5.  This is similar to a 
current signature.  A current signature-like approach can 
detect those failures for which the difference in IDDQ is very 
high (i.e. high SNR).  In Figure 6, the current “jumps” from 
2 µA to 6 µA (A to B) and from 6 µA to 12 µA (B to C) are 
noticeable.  Thus the current signature-like approach would 
reject both the dice B and C.  (C is off-scale and not shown 
in Figure 5). However, die A (the highest value shown in 

Figure 5) would not be rejected.  Observe that in Figure 5, 
there are quite a few dice, including die A, having IDDQ as 
low as 2 µA, but exhibiting high spatial frequency.   As the 
current signature does not use spatial information, it cannot 
distinguish between two IDDQ failed chips, one surrounded 
by faulty chips and the other surrounded by good chips.  It 
is likely that the former chip is good and exhibits high IDDQ 
owing to a leaky wafer region.  The current signature 
approach would treat them the same way and reject both. 

 
Figure 4: IDDQ projections on XY plane 

 
Figure 5: IDDQ projections after outlier removal 

At least three points are needed to define a plane.  As 
shown in a typical wafer map (Figure 8), this is not possible 
for some dice on the edge of a wafer or in a region of low 
yield.  Also, some dice may not have information about all 
neighbors.  Such dice are considered to be potential 
candidates for burn-in.  Alternatively, dice at longer 
distances can be used for prediction [23].  Unless outliers 
are rejected, this can bias the data point (even if the 
neighbors are equidistant).  Also for larger die this may not 
be a good estimate. 
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Figure 6: Wafer signature for a vector  

Elimination of gross outliers 
The gross outliers need to be eliminated before 

determining the best fitting plane in order to obtain a good 
estimate of fault-free IDDQ.  A global outlier rejection 
should be used to eliminate maverick lots. The wafer level 
outlier rejection is needed to eliminate leaky dice.  Based 
on circuit knowledge the approximate fault-free value of 
IDDQ can be estimated. Alternatively, the wafer median can 
be used as an indication of fault-free IDDQ.  But these do not 
help reject outliers.  There are several ways to reject 
outliers.  Two of them are the Chauvenet’s criterion [27] 
and the Tukey method [28] (see Appendix B). 

Since the Chauvenet’s criterion (or the Tukey method) 
is well defined for the Normal distribution, it is important to 
ensure that the correct distribution is used.  The quiescent 
current depends on various device parameters [29].  The 
relationship between effective channel length (Leff) and IDDQ 
is exponential [3].  Since transistor parameters 
approximately follow a Normal distribution due to process 
variation, the distribution of fault-free IDDQ can be 
approximated by the lognormal distribution.  We first 
convert the data to a Normal distribution.  The necessary 
transformations are defined in Appendix C.  When applied 
to IDDQ testing, since outliers are defined only on the higher 
side, a one-sided Chauvenet’s criterion (or Tukey method) 
must be used.  Due to outliers having very high IDDQ and the 
distribution being skewed towards the right, the Inter 
Quartile Range (IQR) is very high and thus the Tukey 
method rejects very few dice.  In our analysis, we used 
Chauvenet’s criterion. 

Deciding the probability threshold 
The most important parameter to be decided while using 

Chauvenet’s criterion is the probability threshold value.  A 
higher threshold would reject many good dice and a lower 
threshold might keep many bad dice.  It may appear that the 
single threshold problem has remained the same but just 
changed the domain.  However, note that the single 
threshold method does not use any probabilistic analysis for 
deciding the threshold.  Since the Chauvenet’s criterion 
uses the number of readings for determining the legitimacy 

of a seemingly outlier reading, it can account for lot-to-lot 
and wafer-to-wafer variations. A value of 0.5 is normally 
used [27]. To verify this, we performed a sensitivity 
analysis of the threshold.  The results of the sensitivity 
analysis are shown in Figure 7.   Here overkill was defined 
as the number of chips rejected by Chauvenet’s rejection 
method that passed all tests (All pass overkill) or failed only 
IDDQ test (Voltage pass overkill).  Note that a tighter 
threshold rejects good chips while a lower threshold can 
accept potentially bad chips.  The philosophy behind using 
spatial information is that not all the dice failing IDDQ-only 
test are bad and not all the dice passing all the tests are 
good.  A threshold of 0.5 was selected because the analysis 
in Appendix C shows that the results are relatively 
insensitive for this threshold value. Multiple passes of 
Chauvenet’s criterion should not be applied, as significant 
information may be lost [30]. 
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Figure 7: Chauvenet threshold sensitivity analysis 

After outlier rejection we perform plane fitting for each 
vector to obtain the predicted IDDQ value.  Each vector is 
analyzed separately since in general process and defect 
sensitivity is different for each vector. For a defective die 
surrounded by good neighbors (non-voltage fails), the plane 
will be lower than its IDDQ values.  On the other hand, if 
neighboring dice are defective and the center die is good, 
the plane will be much higher.  In this case, however, it is 
reasonable to expect the center die to be a high risk and a 
candidate for burn-in. 

The predicted plane value is compared with the actual 
value and the residual is computed for each vector i using 
the following equation 

 
Ri = (IDDQ -actual)i – (IDDQ-estimated)i 

 
We then determine the standard deviation (σi) of the 

residuals across the wafer for each vector.  The dice that are 
above any predicted IDDQ value by more than 3σ are 
considered high risk and are rejected by our method.  In 
practice such dice would normally be subjected to burn-in. 
When the center die IDDQ values are below the predicted 
plane values by more than 3σ, it indicates that one or more 
of the surrounding dice are likely to be defective.  To 
determine which neighboring dice are indeed defective, we 



may need to consider neighboring dice of these dice and 
follow the same plane prediction-based approach.   
However, we did not perform this analysis in the present 
work.   

5. Experimental Results 
The SEMATECH data was used to validate our 

approach.  We looked at the IDDQ-only failed dice and all 
test passed dice (codes “1I” and “$$” in Figure 8) and 
defined planes using neighbor IDDQ values and compared 
the predicted result with the post burn-in (BI) data. To 
retain a reasonable sample size, dice where post BI data is 
not available are not rejected. The complete execution flow 
of the screening procedure is outlined in Figure 9.  Figure 
10 shows a projection plot for all the chips that passed the 5 
µA single threshold IDDQ test on a wafer.  Figure 11 shows 
the surface plot for the same readings used in Figure 10.  
Notice that the chips denoted by A, B and C in Figure 10 
have IDDQ below 5 µA.  However, considering the spatial 
variation for the wafer, these chips are outliers. In fact, as 
the surface plot in Figure 11 illustrates, there are high 
frequency spikes corresponding to these dice. 

 

 
Figure 8: A typical wafer map 

 
Figure 10: Projection plot for sub-5 µA dice 
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Figure 9: Execution flow of IDDQ screening procedure 

 

 
Figure 11: Surface plot for good dice 

Table 1 shows a sample of typical cases on a wafer 
(wafer code MP5BHWQ).  This wafer had a total of 197 
dice out of which 140 passed all the tests and 21 failed only 
the 5 µA threshold IDDQ test at the wafer level.  Chauvenet’s 
criterion with threshold 0.5 rejected 44 dice out of which 13 
failed IDDQ-only test at wafer probe, 28 failed all tests and 3 
failed all but functional test.  In the accepted dice, 8 dice 
failed only IDDQ test.  Out of these, 4 failed only IDDQ test 
again after burn-in, one exhibited power failure, and burn-in 
results were not available for the remaining 3 dice.  The 



three dice had fewer than three neighbors and could not be 
predicted using the plane estimate.  The number of 
neighbors that passed all the tests or failed only IDDQ test at 
wafer probe are listed in the second column, the remaining 
were either voltage fails or missing.  The predicted values 
and actual IDDQ values are shown for min, max and mean 
for that particular die across all 195 vectors.  Note that the 
die 1003 predictions are lower than the actual values, as this 
die is surrounded by all good dice.  Similarly, the actual 
mean for die 0416 is lower than the predicted value.  If the 
difference is large, one must suspect the neighboring dice.  
One of the neighbors for this die had failed all the tests.  It 
is likely that a defect in this area has affected this die too.  
The burn-in result is not available for this die. 

 

Table 1: Comparison of predicted and actual IDDQ 

Predicted Actual Die ID Pass/ 
IDDQ-
fail 

Min Max Mean Min Max Mean

0316 2/3 2.62 8.44 4.12 4.24 7.36 5.68 
0416 3/2 2.48 4.60 3.44 0.41 7.60 1.84 
0415 2/2 1.15 3.76 1.85 3.62 7.66 5.42 
0206 2/1 4.85 6.04 5.52 0.32 7.94 1.00 
1003 7/0 0.38 0.74 0.47 4.20 5.40 4.73 

 
 

 
Figure 12: Distribution of residuals 

Figure 12 shows the distribution of the residuals for the 
plane fitting approach.  These residuals are plotted against 
XY coordinates Figure 13.  Fault-free chip residual values 
form a cluster near zero while defective dice have much 
higher residuals (e.g. a die having residual near 4 µA) and 
float above the cluster. 

Table 2 and 3 summarize a comparison of several limit-
setting methods. For the static threshold approach, we used 
the 5 µA threshold value. For the wafer median approach, 
the median IDDQ across the wafer for each vector was 

determined.  The threshold value for IDDQ used was 
computed as: 

Ith(i) = median(i) + 3σi 

Figure 13: 3-D residual plot 

For the delta-IDDQ method, we computed the medians 
and the standard deviations of the differences between 
consecutive readings of all dice.  If any delta was more than  
3σ above the median, the die was rejected.  For our 
implementation of the current signature approach, we 
followed the same procedure as for delta-IDDQ after sorting 
all the readings in ascending order.  For the plane fit 
approach, Chauvenet’s criterion was first used to reject 
gross outliers, a plane-fit estimate was computed for IDDQ-
only failed dice, residuals were computed for all 195 
vectors for all dice on a wafer, and the dice having residuals 
outside 3σ were rejected.  We then used SEMATECH test 
results to compute the burn-in (BI) fallout, overkill and the 
defect levels for the different methods.  Because we are not 
certain whether dice with IDDQ above the 5 µA threshold are 
actually faulty or not, we considered post-BI IDDQ-only 
failures first as fail and then as pass as shown in Tables 2 
and 3 respectively. The actual values will presumably lie in 
between. 

The following formulae were used for computing yield, 
overkill, and defect level (DL): 

100⋅=
chipstotal

chipsacceptedtotal
Yield  

)1( Yield
inburnedchipsrejected

BIafterpassedchipsrejectedOverkill −⋅=  

Yield
inburnedchipsaccepted

BIafterfailedchipsaccepted
DL ⋅=  

 



Table 2: Comparison of different pass/fail limit setting 
schemes when post-BI IDDQ fails are considered 

Approach Test Result 
Single 

Threshold 
Wafer 

Median 
Delta 
IDDQ 

Current 
Signature

Plane 
Fit 

Accept 16644 16001 14464 15993 11099
BI  2215 3652 3143 3075 1419 
Fail BI 664 1821 1660 1358 252 
% fail 29.97 49.86 52.81 44.16 17.76 
Reject 1822 2465 4002 2473 7367 
BI 1674 237 746 814 2470 
Pass BI 313 33 381 147 697 
% pass 18.69 13.92 51.07 18.05 28.22 
% Overkill 1.84 1.85 11.06 2.41 11.26 
% Yield 90.13 86.65 78.32 86.61 60.11 
% DL 27.02 43.21 41.36 38.25 10.67 

Table 3: Comparison of different pass/fail limit setting 
schemes when post-BI IDDQ fails are ignored 

Approach Test Result 
Single 

Threshold 
Wafer 

Median 
Delta 
IDDQ 

Current 
Signature

Plane 
Fit 

Accept 16644 16001 14464 15993 11099
BI  2215 3652 3143 3075 1419 
Fail BI 539 512 356 297 220 
% fail 24.33 14.02 11.32 9.65 15.50 
Reject 1822 2465 4002 2473 7367 
BI 1674 237 746 814 2470 
Pass BI 1555 91 528 454 1392 
% pass 92.89 38.39 70.77 55.77 56.36 
% Overkill 9.16 5.12 15.33 7.46 22.48 
% Yield 90.13 86.65 78.32 86.61 60.11 
% DL 21.93 12.14 8.87 8.36 9.32 

 
The yield values are obtained simply by dividing the 

number of accepted chips by the total number of chips 
(18466) in the data set. We use the burn-in sample to 
estimate misclassification of chips. The overkill is the yield 
loss due to rejecting chips that pass burn-in. This figure 
includes healing defects. For example, in Table 2, all of the 
chips that are rejected due to the single threshold test at 
wafer level would also be expected to fail after burn-in. But 
as can be seen, 313 pass. In practical production, chips that 
fail wafer test would be rejected, since too few would heal 
to justify the packaging and additional testing cost, and 
healers are a reliability hazard. Thus our overkill figures are 
higher than if computed using standard practice. 

The defect level is assumed to be the burn-in failure rate 
of accepted chips scaled by the yield. This permits 
comparison of the absolute number of defective parts for 
each method. Since the SEMATECH experiment focused 
on test method evaluation, the sample selected for burn-in 
was biased towards failed dice, particularly IDDQ-only dice. 
This explains why defect levels are abnormally high.  The 
high BI fallout rate of accepted chips for the wafer median, 
delta-IDDQ and current signature test can be explained as 

follows.  Some of the IDDQ readings are several 
milliamperes, which results in pass/fail thresholds much 
higher than the other two approaches.  This causes many 
dice with IDDQ above 5 µA to be accepted, which 
subsequently fail the 5 µA threshold after burn-in. This 
effect can also explain the difference in accepted and 
rejected fallout rates between the static threshold and plane 
fit methods.  

Large jumps in deltas between IDDQ values are 
eliminated in the current signature approach due to sorting, 
so it accepts more dice than delta-IDDQ.  Many of the dice 
accepted by current signatures have elevated IDDQ for all 
vectors.  Many of these devices fail burn-in, resulting in a 
lower percentage of accepted chips passing post-BI tests. 

 It can be seen that each method has its own limitations.  
The results also underscore how the static-threshold 
approach is the worst choice for IDDQ testing.  When IDDQ-
only failures are ignored, it has the highest defect level.  
Although the yield of the plane-fit method is lower than the 
other methods, it has by far the lowest defect level in Table 
2, and a relatively low one in Table 3, indicating that the 
dice rejected by this method are indeed defective.  However 
this comes at the cost of the highest overkill. By selecting a 
less stringent probability threshold and/or residual rejection 
limit, it is possible to achieve higher yield with a low defect 
level. As part of a burn-in minimization strategy, thresholds 
can be set so that accepted dice have sufficiently low defect 
levels to avoid burn-in, while dice rejected by this method 
are burned in, rather than being counted as yield loss. 

6. Conclusion 
This work has demonstrated that the use of spatial 

information for IDDQ prediction is a valuable technique that 
allows us to consider process variations while predicting 
fault-free IDDQ values.   It was observed in [25] that the 
direction of the gradient of the plane is correlated to the 
speed of the chip.  The work here can be extended to use 
this information by defining IDDQ of a die as a function of 
the die coordinates and the slope of the plane.  Also, the 
correlation between IDDQ and maximum operating 
frequency can be exploited for better prediction [29].  Work 
in this direction will be reported in the future.  Also it is 
possible to correlate the spatial information for reducing 
early failure rate similar to the work reported in [31].  For 
the SEMATECH experiment, the burn-in sample was 
biased towards IDDQ-only failed dice.  By using recently 
obtained post-burn-in data it is possible to resample the dice 
to minimize the effect of this bias.  While it may reduce the 
sample size considerably, it would be interesting to see 
what conclusions can be drawn from such an analysis. 
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Appendix A: 3-D Least Square Fit 
The least squares fit for two dimensions can be found in 

[26]. We extend this method to three dimensions.  The 
desired plane equation is of the form  

CyBxAyxz ++=),(  
where z(x,y) is the IDDQ value for the ith vector for the die 
whose X and Y coordinates are x and y. We wish to 
minimize the sum of the squares of errors, that is, 
perpendicular distances from each z(xi,yi) point to the 
plane.  The error function to be minimized is given by 

2)(∑ −−−= ii CyBxAzE  

Differentiating with respect to A, B and C and equating 
to zero we obtain: 

0)( =−−−=
∂
∂ ∑ ii CyBxAz
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∂ ∑ iii xCyBxAz
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Rewriting,  

∑ ∑∑ ++= iii yCxBANz  

∑ ∑ ∑ ∑++= iiiiii yxCxBxAzx 2  

∑ ∑ ∑ ∑++= 2
iiiiii yCyxByAzy  

 
where N is the total number of points. If data is available 
for all the neighboring dice and all dice are tested good, N 
would be 8. 

For simplicity, we use the following notations: 

∑= ix xS , ,  ∑= iySy ∑= iz zS

∑= 2
ixx xS , S  ∑= 2

iyy y

∑= iixy yxS , S ,  ∑= iixz zx ∑= iiyz zyS

 
Thus, the above equations can be written as 

yxz CSBSANS ++=  
xyxxxxz CSBSASS ++=  

yyxyyyz CSBSASS ++=  
Solving simultaneously we obtain, 
 

2222 xyyxxxyyxyyxyyxx NSSSSSSSSSNSd −−−+=  

dSSSSSSSSSSSSSSA xyyyxxzyxxxyxyzyyxyxyxz /)]()()([ 2−+−+−=

dSSSySSNSSySSSNSSB yyxxyzxyxyzyyyxz /)]()()([ 2 −+−+−=  

dSySSxySSSNSxxSNSSxSSC xxxzxyzxyyxz /)]()()([ 2 −+−+−=  
 

By substituting values of A, B and C the value of z for a 
given (x,y) pair can be determined.  This is the best fitting 
plane value. 

Appendix B: Rejection of Outliers 
Chauvenet’s criterion 

Chauvenet's criterion is a method to reject outliers in a 
distribution [27]. It determines the probability that a 
seemingly illegitimate reading can occur in a data set.  If 
this probability is less than a threshold value, it is discarded. 
The threshold probability used is usually 0.5. 

Assume a data set having N readings with the mean and 
standard deviation µ and σ, respectively.  Whether a 
reading ksus is illegitimate or not is decided as follows: 

σ
µ−

= sus
sus

kt  

where tsus is the number of standard deviations by which ksus 
differs from µ.  The probability P(outside tsus.σ) is obtained 
from the standard probability tables and is multiplied by N.   
 

n(worse than tsus) = N·P(outside tsus·σ) 
 

If n is less than 0.5, the reading is rejected. 
 

Tukey Method 
The Tukey method assumes that the distribution is 

Normal.  Two quartile points (Q1 and Q3) are defined such 
that 1/4th of the readings are less than Q1 and 1/4th of the 
readings are greater than Q3.  Then the Inter Quartile Range 
(IQR) is defined as  

IQR = Q3 – Q1 
The lower quartile limit (LQL) and upper quartile limit 

(UQL) are defined as 
LQL = Q1 – 3IQR 
UQL = Q3+ 3IQR 

The readings outside of this range are considered 
outliers.  Of course, for IDDQ testing, only the UQL is used.  
Also note that the multiplying factor is a parameter of 
choice and values other than 3 are often used. 

Appendix C: Data transformations 
The standard lognormal distribution has a probability distribution 
function given by [26] 

πσ

σ

2
)(

2

2

2
)(log

x
exf

x
−

=   
The Normal distribution has a probability distribution function 
given by 

πσ

σ
µ

2
)(

2

2

2
)( −

−

=

x

exf  
 To convert a lognormal distribution to the Normal 

distribution, each IDDQ reading from the set of readings for a 
vector is divided by the minimum IDDQ for that vector on 
the wafer (xmin) and the log of the ratio is taken.  

))(loglog()(
minx
normalxNormalx =  



 The initial distribution and the distribution for IDDQ 
readings for a vector on a wafer after transformation are 
shown in Figures 14 and 15. 

We performed a sensitivity analysis of Chauvenet’s 
criterion and results are shown in Figures 16 and 17.  These 
figures show the percentage of the accepted and rejected 
IDDQ-only chips. A stringent (higher) threshold rejects more 
potentially-good chips while a lower threshold causes many 
outliers left in the dataset that can bias the plane estimate 
higher than the actual.  A good threshold value is one that 
rejects as many outliers as possible without rejecting any of 
the good chips.  Since the distribution of good and bad 
chips is not known prior to the analysis, a definition of good 
threshold is debatable.  The threshold of 0.5 corresponds to 
the 3σ limit for the Normal distribution, which is why it is 
often used.  The difference between Figures 16 and 17 
highlights the importance of data transformation.  Without 
lognormal transformation, 2 to 6% more chips are rejected.  

 
Figure 14 : Lognormal distribution of IDDQ data 

 

 
Figure 15: Normal distribution of IDDQ data 
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Figure 16: Accept/Reject percentages without lognormal 
transform 
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Figure 17: Accept/reject percentages after lognormal 
transform 
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