

Testing the Path Delay Faults for ISCAS85 Circuit c6288

Wangqi Qiu D. M. H. Walker
Department of Computer Science

Texas A&M University
College Station TX 77843-3112

Tel: (979) 862-4387
Fax: (979) 847-8578

Email: {wangqiq, walker}@cs.tamu.edu

Abstract
It is known that the ISCAS85 circuit c6288 contains an

exponential number of paths and more than 99% of the
path delay faults are untestable. Most ATPG tools which
can efficiently handle other circuits fail on c6288. In this
paper the logic structure of c6288 is studied and the main
features which cause false paths are revealed. A heuristic
which significantly helps the path delay fault test
generation for this circuit is presented. Experimental
results show that our methodology is able to efficiently
generate testable paths for c6288.

1. Introduction
Delay test detects timing defects and ensures that the

design meets the desired performance specifications.
Under the path delay fault model [1] a circuit is considered
faulty if the delay of any of its paths exceeds the
specification time. Because the number of paths in a circuit
(and therefore the number of path delay faults) can be
exponential in the number of gates, usually only the
longest paths, which have the maximum delays, are tested.
These paths are also called critical paths because they
dominate the performance of the circuit.

A path is said to be testable if a rising/falling transition
can propagate from the primary input to the primary output
associated with the path, under certain sensitization criteria
[1][2][3][4][5]. If a path is not testable, it is called an
untestable or false path [6]. For example, in Figure 1, path
a-c-d is a false path under the single-path sensitization
criterion, because to propagate a transition through the
AND gate requires line b to be logic 1 and to propagate the
transition through the OR gate requires line b to be logic 0.
In this paper the terms “untestable” and “false” are used
interchangeably.

a c
b d

Figure 1. A circuit with a false path a-c-d.

Many automatic test pattern generation (ATPG)
methods [7][8][9][10] for path delay faults first generate a
list of long structural paths and then check their testability.

Unfortunately, in most of the ISCAS85 circuits the longest
structural paths are untestable. This fact results in the
inefficiency of these methods. In order to increase the
efficiency, NEST [11] generates paths in a nonenumerative
way, which can handle a large number paths
simultaneously, but it is only effective in highly testable
circuits, where large numbers of path delay faults are
testable. It only generates one testable path for c6288.
DYNAMITE [12] improved the efficiency for poorly
testable circuits, but still results in numerous aborts in the
test generation for c6288. RESIST [13] exploits the fact
that many paths in a circuit have common subpaths and
sensitizes those subpaths only once, which reduces
repeated work and identifies large sets of untestable paths.
Moreover, for the first time this research identified 99.4%
of all path delay faults in circuit c6288 as either testable or
untestable. However, the test generation for c6288 is very
slow. It took 1,122 CPU hours to find 12,592 paths on a
SPARC IPX 28MIPS machine. For comparison, RESIST
generated 86,250 testable paths for c7552, the largest
ISCAS85 circuit, within 2,457 seconds on the same
machine. It can be seen that there is a big gap between the
test generation efficiency for c6288 and the other
ISCAS85 circuits.

Some ATPG tools, such as RESIST, are able to
generate the longest testable paths throughout the entire
circuit, which are termed global longest paths, for c6288.
But to our knowledge, no tool has successfully generated
the longest paths through a particular gate or line for this
circuit. In this paper it is shown that for c6288, it is much
harder to generate the longest testable paths through a
particular gate/line than to generate the global longest
paths. However, testing the longest paths through a
particular gate/line is important because it can detect the
smallest extra delay on that gate/line, due to some spot
defects, such as resistive opens or shorts. In this paper we
present a heuristic which significantly helps the path
generation for c6288. The experimental results show that
with our heuristic, a path generator similar to [14] is able
to efficiently generate the longest paths through each gate
in c6288, with a small number of aborts.

The remainder of the paper is organized as follows. In
Section 2 the logic structure of c6288 is studied and the

main features which result in false paths are revealed.
Section 3 describes the heuristic and path generator we
use. In Section 4 experimental results are shown and
analyzed. Section 5 concludes the paper with directions for
future research.

2. Logic Structure of c6288
ISCAS85 circuit c6288 is a 16×16 multiplier. Figure 2

[15] shows its structure. The circuit contains 240 adders,
among which 16 are half adders, which are shaded in
Figure 2. P31...P0 are the 32-bit outputs. Each floating line,
including P0, is fed by an AND gate, whose inputs are
connected to two primary inputs.

 P0

P2

P15
P16 P31P30

P1

P14

Figure 2. ISCAS85 c6288 16×16 multiplier.

Figures 3(a) and 3(b) [15] show the symbolic and
schematic view of a full adder in c6288, respectively. The
15 top-row half adders in Figure 2 lack the Cin input. Each
of them has two inverters at locations V in Figure 3(b). The
single half adder in the bottom row lacks the B input, and it
has two inverters at locations W.

Full
Adder

A Cin

Cout

B

S

Full
Adder

A Cin

Cout B

S
(a) Symbolic view

V

V

W

W

A
Cin

B

Cout

S
L

(b) Schematic view

Figure 3. Full adder module in c6288.
Table I shows the delays between all the input-output

pairs in the full adder, assuming every gate has one unit
delay and no sensitization constraint is considered. In other

words, the numbers are the structural length between the
input-output pairs.
Table I. Maximum delays between input-output pairs

in a full adder.
 A B Cin

S 6 3 6
Cout 5 2 5

The paths highlighted in Figure 4 are the longest
structural paths in the circuit. These paths are all from
primary input A15 or B0, to output P30. Each of these paths
contains 124 gates, and must include the longest structural
path from input A or Cin to output Cout in at least one adder.

P30

A15 B0

Figure 4. Longest structural paths in c6288.

A
Cin

B

Cout

S
L

0

0

0

(a) A rising transition at Cin

A
Cin

B

Cout

S
L

0

0

0

(b) A falling transition at Cin

Figure 5. Finding a robust test for the longest paths
from input Cin to output Cout in a full adder.

However, there is no robust test for the longest
structural paths from input Cin to output Cout in the full
adder. Figures 5(a) and 5(b) show the signal propagation
and necessary assignments if a rising or falling transition is
applied to Cin. Similarly, the longest structural paths from
input A to output Cout are not robustly testable either.

Therefore all the 5-gate paths from A or Cin to Cout are not
robustly testable. But the 4-gate paths from A or Cin to Cout
are robustly testable, if the first gate is bypassed. Figure 6
shows an example.

A
Cin

B

Cout

S
L

1
0

0

0

0
Figure 6. A longest robustly testable path from input

Cin to output Cout in a full adder.
Thus, when a robustly testable path goes from A or Cin

to Cout through a full adder or the half adder in the bottom
row, its delay must be at least one gate less than that of a
longest structural path. It can be seen from Figure 2 that
this case must happen in one full adder and the half adder
in the bottom row. Therefore, the delay of a longest
robustly testable path is at least two gates less than that of
a longest structural path, which contains 124 gates. With
similar analysis, the delay of a longest non-robustly
testable path is at least one gate less than that of a longest
structural path. The reason is, if the path goes through a
longest structural path from A (or Cin) to Cout in a full
adder, there must be a glitch at Cout, according to Figure 5.
This glitch cannot propagate through the longest structural
paths from A (or Cin) to Cout in the half adder in the bottom
row. Therefore, the non-robustly testable path must bypass
one gate before it reaches the half adder, or bypass one
gate in the half adder. Then a glitch can be generated at the
output Cout of the half adder and propagated to the primary
output P30, without bypassing any more gates.

A1 S1 A2 S2 An Sn

Figure 7. An adder network example.

The reason why traditional path generators fail on
c6288 is because all the longest structural paths, which
have 124 gates, are not testable. Because of the
reconvergence within the adder modules (local
reconvergence) and in the adder network (global
reconvergence), the number of longest structural paths is
exponential in the number of gates. For example, in an
adder network shown in Figure 7, there are n full adders
and the output S of the ith adder is connected to the input A
of the (i+1)th adder (0<i<n). The dotted curves represent
the four reconverged longest structural paths between input
A and output Cout within an adder. In this network, there
are 22n longest structural paths, which have equal length,
between the input A1 and the output Sn. If they are all false
paths, to prove so many longest structural paths are

untestable consumes too much CPU time for traditional
path generators.

The path generator used in [14] is able to find the
global longest testable path in c6288. The reason is that it
uses a dynamic dominator heuristic [16]. This tool grows
paths from primary inputs. It can be seen in Figure 8 that
when a path reaches line H it must go through line L, and
when it reaches line P it must go through line S, assuming
the path attempts to extend to the farthest primary output
from that point. It is said that line L dynamically dominates
line H and line S dynamically dominates line P. Therefore,
if the path is blocked somewhere and the conflict is
irrelevant to the decision of going through the upper NOR
gate or the lower NOR gate, all the paths through the series
of dynamic dominators can be proven untestable. Figure 9
shows this case in the multiplier. Then the path generation
backtracks to g3 immediately and extends to a shorter path
P2, instead of trying all the equal length paths from g1 to
g4.

A
Cin

B

Cout

S
L H

P

Figure 8. Dynamic dominators in a full adder.

conflict

Path extension direction

g4g3 g2g1

P1 P2

Figure 9. Dominator heuristic.

However, the limitation of this heuristic is that it only
solves the problem of exponential number of paths due to
the local reconvergence within an adder. It does not solve
the problem due to the global reconvergence in the adder
network. Fortunately, as shown in Figure 4, there is not
much global reconvergence which causes backtracks,
before a global longest testable path is generated. This
assumes the local reconvergence problem is solved so that
there are few backtracks within an adder.

Unfortunately, if we attempt to generate the longest
testable paths through some gates/adders in c6288, e.g. the
black one in Figure 10, the global reconvergence problem
is much worse. The longest structural paths are highlighted
in Figure 10. As discussed above, whenever a robustly
testable path passes from the input A or Cin to the output
Cout in an adder, it must bypass at least one gate. So the
delay of a longest robustly testable path through a
particular adder is several gates less than that of a longest
structural path through this adder, depending on which

column the adder is located in. For example, a longest
robustly testable path through the black adder in Figure 10
should bypass at least 6 gates. This results in more false
paths which are longer than the longest testable paths.

P30

A11 B0

Figure 10. Longest structural paths through a

particular adder.

3. Heuristic
The analysis in the previous section shows that local

conflicts are the fundamental reason for false paths in
c6288, and this is true for most circuits [3]. The
reconvergence which does not cause conflicts, either local
or global, exacerbates the problem by introducing an
exponential number of backtracks for a single local
conflict. But this type of reconvergence does not cause the
false path problem by itself. Therefore, it is helpful to
identify the local conflicts as early as possible to avoid the
expensive search in the non-solution space (more
reconvergence causes more expensive search in the non-
solution space).

The path generator used in [14] includes a
preprocessing phase. In this phase the maximum structural
distance from each gate to primary outputs is computed,
without considering any logic constraint. This value is
termed the PERT delay. In the path generation phase,
partial paths are initialized from primary inputs. A partial
path is a path which originates from a primary input but
has not reached any primary output. A value called
esperance [3] is associated with a partial path. The
esperance is the sum of the length of the partial path and
the PERT delay from its last node to a primary output. In
other words, the esperance of a partial path is the upper
bound of its delay when it reaches a primary output. In
each iteration of the path generation phase, the partial path
with the highest esperance value is extended by adding one
gate. If the last gate of the partial path has more than one
fanout, the partial path splits. The esperance value
associated with each new partial path is updated. Then the
constraints to propagate the transition on the added gate,
such as non-controlling side input values, are applied. If
there are any conflicts, the whole search space which
contains the partial path is trimmed off.

However, a drawback in this path generator is that it
only detects the conflict between the constraints at the
newly added gate and the gates already in the partial paths.
For the remaining search space, it simply uses PERT delay
values. Since the PERT delays are computed without
considering any logic constraint, it is not able to detect a
local conflict in the unexplored search space until the
partial path grows to that site. This results in too many
backtracks if the case shown in Figure 10 occurs.

The basic idea of our heuristic is to exclude untestable
subpaths due to local conflicts when computing the PERT
delay for a gate. We call the new values Smart-PERT
delays, or S-PERT. Because some untestable subpaths are
not included in the S-PERT computation, a gate’s S-PERT
delay is always less than or equal to its PERT delay.
Moreover, compared to the PERT delay, the S-PERT delay
is closer to the delay of the longest testable path from that
gate to a primary output.

A gate’s PERT delay can be computed using its fanout
gates’ PERT delays. If the unit delay model is used,
PERT(gi) = max {PERT(gj) | gj is a fanout gate of gi} + 1.
Figure 11(a) shows an example, assuming PERT(g3) = 8
and PERT(g4) = 6 are known. In this example, PERT(g0) =
10 is computed using PERT(g1) and PERT(g2).

g0

g1

g2

g3

g4

8

6

9

7

10

(a)

g0

g1

g2

g3

g4

8

6

9

7

8

(b)
Figure 11. Computation of PERT delay (a)

and S-PERT delay (b).
When S-PERT(gi) is computed, a user-defined variable

S-PERT depth is used. If the S-PERT depth is set to d, then
S-PERT(gi) is computed using S-PERT(gj) where gj is d
gates from gi in gi’s fanout tree. For example, in Figure
11(b), if d is set to 2, then S-PERT(g0) is computed using
S-PERT(g3) and S-PERT(g4).

The heuristic works as follows. Suppose S-PERT(gi) is
being computed. G = {gj | gj is d gates from gi in gi’s
fanout tree}, and G is sorted by S-PERT(gj) in decreasing
order. The heuristic pops the first gate gj in G and attempts
to propagate a transition from gi to gj. If there is no conflict
(the transition successfully reaches gj, with all the
constraints applied), S-PERT(gi) is set to S-PERT(gj) + d.
Otherwise, it pops the second gate in G and repeats the
same procedure. In Figure 11(b), for example, at first the
heuristic tries to propagate a transition from g0 to g3, but
finds it is impossible to set the side inputs of g2 and g3 both
to non-controlling values. Then it tries g4 and does not
meet any conflict. So S-PERT(g0) is 8. It is obvious that
increasing the S-PERT depth can make the S-PERT delays
closer to the delay of the longest testable path from that

gate to a primary output, but its cost increases
exponentially. Therefore, there must be some trade-off.

Since most conflicts are local, with S-PERT delays, the
path generation is well guided to a testable path, with
many fewer conflicts, because most of the non-solution
space is trimmed off during the preprocessing phase.

4. Experimental Results
A path generation tool using our heuristic has been

implemented in Visual C++ and run on Windows 2000
with a 2.2 GHz Pentium 4 processor and 256 MB memory.
The unit delay model is used in the experiments.

In our experiments we consider only robustly testable
paths, because a robust test requires the on-path signals
have different initial and final logic values. Therefore the
test is comparable to a transition test [17]. If neither the
slow-to-rise nor the slow-to-fall transition fault at a
gate/line is detectable, it is not possible to generate a
robustly testable path through that gate/line. Therefore the
transition fault coverage for c6288 is a good reference to
see how many gates/lines have testable paths but our tool
is not able to generate the longest through them (aborts).

Because a transition test can be composed by pairing
the stuck-at-0 and stuck-at-1 vectors [18], the transition
fault coverage achieved by exhaustively pairing all stuck-
at vectors gives the percentage of the gates/lines which
have at least one robustly testable path. For c6288, the
percentage is 99.19% [19]. In other words, 0.81% of the
gates have no transition test.
Table II. Results for generating the K longest robustly

testable paths through each gate for c6288.
K # of Paths Aborts (%) CPU Time (m:s)
 1 726 1.28 30:53
 2 1 463 1.28 31:33
 3 2 194 1.49 37:33
 4 2 942 1.49 38:00
 5 3 679 1.49 38:10
 6 4 416 1.49 38:16
 7 5 127 1.49 38:30
 8 5 828 1.49 38:33
 9 6 529 1.57 40:26
10 7 224 1.57 40:33
Table II shows the results for generating the K longest

paths through each gate for c6288. In the experiments we
set the S-PERT depth to 6. Very little benefit was observed
for larger S-PERT depths. Column 2 shows the number of
generated paths. Column 3 shows the percentage of
aborted gates. In the experiments the path generator gives
up if the Kth testable path is not found after 50,000
iterations. An iteration contains a set of operations in
which a partial path is popped and one more gate is added.
The CPU time is shown in column 4. Only a few of gates
which have testable paths passing through get aborted,
compared to the transition fault coverage. For example,
when K=1, the percentage is 0.47% (1.28% – 0.81%). Also

it can be seen that most CPU time is spent on finding the
first testable path through each gate. It is known that many
longest testable paths have equal length. So after the first
one is found, it does not cost much to find more. On the
other hand, when the abort percentage increases (K=3 and
K=9), the CPU time slightly jumps. It indicates that the
CPU time spent on the aborts cannot be neglected, even if
the abort rate is low.

5. Conclusions and Future Work
The ISCAS85 circuit c6288 has an exponential number

of false paths. The path generation for this circuit using
existing ATPG tools is very inefficient, compared to other
circuits. In this paper we have studied the logic structure of
c6288, and found the features which result in numerous
false paths. We have proposed a novel heuristic which
efficiently generates the K longest paths through each gate
for c6288. Compared to the transition fault coverage, only
a few of gates get aborted using this heuristic.

In this work we set the S-PERT delay depth to a fixed
value. However, if the value is too small, the path
generator cannot exclude enough local conflicts, and if it is
too large, its cost is too high. Our future work is to make
the heuristic automatically learn how large the S-PERT
delay depth should be for different gates.

Acknowledgements
This research was funded by the Semiconductor

Research Corporation under contract 2000-TJ-844 and the
National Science Foundation under contract CCR-
1109413.

References

[1] G. L. Smith, “Model for Delay Faults Based Upon Paths,”

IEEE Int’l Test Conf., Philadelphia, PA, Oct. 1985, pp. 342-
349.

[2] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in
Logic Circuits,” IEEE Trans. on Computer-Aided Design,
vol. 6, no. 9, Sept. 1987, pp. 694-701.

[3] J. Benkoski, E. V. Meersch, L. J. M. Claesen and H. D.
Man, “Timing Verification Using Statically Sensitizable
Paths,” IEEE Trans. on Computer-Aided Design, vol. 9, no.
10, Oct. 1990, pp. 1073-1084.

[4] P. McGeer and R. K. Brayton, “Efficient Algorithms for
Computing the Longest Viable Path in a Combinational
Network,” ACM/IEEE Design Automation Conf., Las Vegas,
NV, June 1989, pp. 561-567.

[5] H. Chang and J. A. Abraham, “VIPER: An Efficient
Vigorously Sensitizable Path Extractor,” ACM/IEEE Design
Automation Conf., Dallas, TX, June 1993, pp. 112-117.

[6] J. J. Liou. A. Krstic, Li-C. Wang and K. T. Cheng, “False-
Path-Aware Statistical Timing Analysis and Efficient Path
Selection for Delay Testing and Timing Validation,”
ACM/IEEE Design Automation Conf., New Orleans, LA,
June 2002, pp. 566-569.

[7] W. N. Li, S. M. Reddy and S. K. Sahni, “On Path Selection
in Combinational Logic Circuits,” IEEE Trans. on
Computer Aided Design, vol. 8, no. 1, Jan. 1989, pp. 56-63.

[8] A. K. Majhi, V. D. Agrawal, J. Jacob and L. M. Patnaik,

“Line Coverage of Path Delay Faults,” IEEE Trans. on VLSI
Systems, vol. 8, no. 5, Oct. 2000, pp. 610-613.

[9] A. Murakami, S. Kajihara, T. Sasao, R. Pomeranz and S. M.
Reddy, “Selection of Potentially Testable Path Delay Faults
for Test Generation,” IEEE Int’l Test Conf., Atlantic City,
NJ, Oct. 2000, pp. 376-384.

[10] Y. Shao, S. M. Reddy, I. Pomeranz and S. Kajihara, “On
Selecting Testable Paths in Scan Designs,” IEEE European
Test Workshop, Corfu, Greece, May 2002, pp. 53-58.

[11] I. Pomeranz, S. M. Reddy and P. Uppaluri, “NEST: A
Nonenumerative Test Generation Method for Path Delay
Faults in Combinational Circuits,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 14, no. 12, Dec. 1995, pp. 1505-1515.

[12] K. Fuchs, F. Fink and M. H. Schulz, “DYNAMITE: An
Efficient Automatic Test Pattern Generation System for Path
Delay Faults,” IEEE Trans. on Computer-Aided Design, vol.
10, no. 10, Oct. 1991, pp. 1323-1355.

[13] K. Fuchs, M. Pabst and T. Rossel, “RESIST: A Recursive
Test Pattern Generation Algorithm for Path Delay Faults
Considering Various Test Classes,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 13, no. 12, Dec. 1994, pp. 1550-1562.

[14] J. A. Bell, “Timing Analysis of Logic-Level Digital Circuits
Using Uncertainty Intervals,” M. S. Thesis, Department of
Computer Science, Texas A&M University, 1996.

[15] M. Hansen, H. Yalcin and J. P. Hayes, “Unveiling the
ISCAS-85 Benchmarks: A Case Study in Reverse
Engineering,” IEEE Trans. on Design and Test, vol. 16, no.
3, July-Sept. 1999, pp. 72-80.

[16] T. Kirkland and M. R. Mercer, “A Topological Search
Algorithm for ATPG,” ACM/IEEE Design Automation
Conf., June 1987, Miami, FL, pp. 502-508.

[17] Z. Barzilai and B. K. Rosen, “Comparison of AC Self-
Testing Procedures,” IEEE Int’l Test Conf., Philadelphia,
PA, Oct. 1983, pp. 89-94.

[18] J. Waicukauski, E. Lindbloom, B. K. Rosen and V. S.
Iyengar, “Transition Fault Simulation,” IEEE Design & Test
of Computers, vol. 4, no. 5, April 1987, pp. 32-38.

[19] X. Liu, M. S. Hsiao, S. Chakravarty and P. J. Thadikaran,
“Novel ATPG Algorithms for Transition Faults,” IEEE
European Test Workshop, Corfu, Greece, May 2002, pp. 47-
52.

