
 

Testing the Path Delay Faults for ISCAS85 Circuit c6288

Wangqi Qiu D. M. H. Walker 
Department of Computer Science 

Texas A&M University 
College Station TX 77843-3112 

Tel: (979) 862-4387 
Fax: (979) 847-8578 

Email: {wangqiq, walker}@cs.tamu.edu 
 

Abstract 
It is known that the ISCAS85 circuit c6288 contains an 

exponential number of paths and more than 99% of the 
path delay faults are untestable. Most ATPG tools which 
can efficiently handle other circuits fail on c6288. In this 
paper the logic structure of c6288 is studied and the main 
features which cause false paths are revealed. A heuristic 
which significantly helps the path delay fault test 
generation for this circuit is presented. Experimental 
results show that our methodology is able to efficiently 
generate testable paths for c6288. 

1. Introduction 
Delay test detects timing defects and ensures that the 

design meets the desired performance specifications. 
Under the path delay fault model [1] a circuit is considered 
faulty if the delay of any of its paths exceeds the 
specification time. Because the number of paths in a circuit 
(and therefore the number of path delay faults) can be 
exponential in the number of gates, usually only the 
longest paths, which have the maximum delays, are tested. 
These paths are also called critical paths because they 
dominate the performance of the circuit. 

A path is said to be testable if a rising/falling transition 
can propagate from the primary input to the primary output 
associated with the path, under certain sensitization criteria 
[1][2][3][4][5]. If a path is not testable, it is called an 
untestable or false path [6]. For example, in Figure 1, path 
a-c-d is a false path under the single-path sensitization 
criterion, because to propagate a transition through the 
AND gate requires line b to be logic 1 and to propagate the 
transition through the OR gate requires line b to be logic 0. 
In this paper the terms “untestable” and “false” are used 
interchangeably. 
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Figure 1. A circuit with a false path a-c-d. 

Many automatic test pattern generation (ATPG) 
methods [7][8][9][10] for path delay faults first generate a 
list of long structural paths and then check their testability. 

Unfortunately, in most of the ISCAS85 circuits the longest 
structural paths are untestable. This fact results in the 
inefficiency of these methods. In order to increase the 
efficiency, NEST [11] generates paths in a nonenumerative 
way, which can handle a large number paths 
simultaneously, but it is only effective in highly testable 
circuits, where large numbers of path delay faults are 
testable. It only generates one testable path for c6288. 
DYNAMITE [12] improved the efficiency for poorly 
testable circuits, but still results in numerous aborts in the 
test generation for c6288. RESIST [13] exploits the fact 
that many paths in a circuit have common subpaths and 
sensitizes those subpaths only once, which reduces 
repeated work and identifies large sets of untestable paths. 
Moreover, for the first time this research identified 99.4% 
of all path delay faults in circuit c6288 as either testable or 
untestable. However, the test generation for c6288 is very 
slow. It took 1,122 CPU hours to find 12,592 paths on a 
SPARC IPX 28MIPS machine. For comparison, RESIST 
generated 86,250 testable paths for c7552, the largest 
ISCAS85 circuit, within 2,457 seconds on the same 
machine. It can be seen that there is a big gap between the 
test generation efficiency for c6288 and the other 
ISCAS85 circuits. 

Some ATPG tools, such as RESIST, are able to 
generate the longest testable paths throughout the entire 
circuit, which are termed global longest paths, for c6288. 
But to our knowledge, no tool has successfully generated 
the longest paths through a particular gate or line for this 
circuit. In this paper it is shown that for c6288, it is much 
harder to generate the longest testable paths through a 
particular gate/line than to generate the global longest 
paths. However, testing the longest paths through a 
particular gate/line is important because it can detect the 
smallest extra delay on that gate/line, due to some spot 
defects, such as resistive opens or shorts. In this paper we 
present a heuristic which significantly helps the path 
generation for c6288. The experimental results show that 
with our heuristic, a path generator similar to [14] is able 
to efficiently generate the longest paths through each gate 
in c6288, with a small number of aborts. 

The remainder of the paper is organized as follows. In 
Section 2 the logic structure of c6288 is studied and the 



main features which result in false paths are revealed. 
Section 3 describes the heuristic and path generator we 
use. In Section 4 experimental results are shown and 
analyzed. Section 5 concludes the paper with directions for 
future research. 

2. Logic Structure of c6288 
ISCAS85 circuit c6288 is a 16×16 multiplier. Figure 2 

[15] shows its structure. The circuit contains 240 adders, 
among which 16 are half adders, which are shaded in 
Figure 2. P31...P0 are the 32-bit outputs. Each floating line, 
including P0, is fed by an AND gate, whose inputs are 
connected to two primary inputs. 

 P0

P2

P15
P16 P31P30

P1

P14

 
Figure 2. ISCAS85 c6288 16×16 multiplier. 

Figures 3(a) and 3(b) [15] show the symbolic and 
schematic view of a full adder in c6288, respectively. The 
15 top-row half adders in Figure 2 lack the Cin input. Each 
of them has two inverters at locations V in Figure 3(b). The 
single half adder in the bottom row lacks the B input, and it 
has two inverters at locations W. 
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(b) Schematic view 

Figure 3. Full adder module in c6288. 
Table I shows the delays between all the input-output 

pairs in the full adder, assuming every gate has one unit 
delay and no sensitization constraint is considered. In other 

words, the numbers are the structural length between the 
input-output pairs. 
Table I. Maximum delays between input-output pairs 

in a full adder. 
 A B Cin 

S 6 3 6 
Cout 5 2 5 

The paths highlighted in Figure 4 are the longest 
structural paths in the circuit. These paths are all from 
primary input A15 or B0, to output P30. Each of these paths 
contains 124 gates, and must include the longest structural 
path from input A or Cin to output Cout in at least one adder. 
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Figure 4. Longest structural paths in c6288. 
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(a) A rising transition at Cin 
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(b) A falling transition at Cin 

Figure 5. Finding a robust test for the longest paths 
from input Cin to output Cout  in a full adder. 

However, there is no robust test for the longest 
structural paths from input Cin to output Cout in the full 
adder. Figures 5(a) and 5(b) show the signal propagation 
and necessary assignments if a rising or falling transition is 
applied to Cin. Similarly, the longest structural paths from 
input A to output Cout are not robustly testable either. 



Therefore all the 5-gate paths from A or Cin to Cout are not 
robustly testable. But the 4-gate paths from A or Cin to Cout 
are robustly testable, if the first gate is bypassed. Figure 6 
shows an example. 
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Figure 6. A longest robustly testable path from input 

Cin to output Cout  in a full adder. 
Thus, when a robustly testable path goes from A or Cin 

to Cout through a full adder or the half adder in the bottom 
row, its delay must be at least one gate less than that of a 
longest structural path. It can be seen from Figure 2 that 
this case must happen in one full adder and the half adder 
in the bottom row. Therefore, the delay of a longest 
robustly testable path is at least two gates less than that of 
a longest structural path, which contains 124 gates. With 
similar analysis, the delay of a longest non-robustly 
testable path is at least one gate less than that of a longest 
structural path. The reason is, if the path goes through a 
longest structural path from A (or Cin) to Cout in a full 
adder, there must be a glitch at Cout, according to Figure 5. 
This glitch cannot propagate through the longest structural 
paths from A (or Cin) to Cout in the half adder in the bottom 
row. Therefore, the non-robustly testable path must bypass 
one gate before it reaches the half adder, or bypass one 
gate in the half adder. Then a glitch can be generated at the 
output Cout of the half adder and propagated to the primary 
output P30, without bypassing any more gates. 
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Figure 7. An adder network example. 

The reason why traditional path generators fail on 
c6288 is because all the longest structural paths, which 
have 124 gates, are not testable. Because of the 
reconvergence within the adder modules (local 
reconvergence) and in the adder network (global 
reconvergence), the number of longest structural paths is 
exponential in the number of gates. For example, in an 
adder network shown in Figure 7, there are n full adders 
and the output S of the ith adder is connected to the input A 
of the (i+1)th adder (0<i<n). The dotted curves represent 
the four reconverged longest structural paths between input 
A and output Cout within an adder. In this network, there 
are 22n longest structural paths, which have equal length, 
between the input A1 and the output Sn. If they are all false 
paths, to prove so many longest structural paths are 

untestable consumes too much CPU time for traditional 
path generators. 

The path generator used in [14] is able to find the 
global longest testable path in c6288. The reason is that it 
uses a dynamic dominator heuristic [16]. This tool grows 
paths from primary inputs. It can be seen in Figure 8 that 
when a path reaches line H it must go through line L, and 
when it reaches line P it must go through line S, assuming 
the path attempts to extend to the farthest primary output 
from that point. It is said that line L dynamically dominates 
line H and line S dynamically dominates line P. Therefore, 
if the path is blocked somewhere and the conflict is 
irrelevant to the decision of going through the upper NOR 
gate or the lower NOR gate, all the paths through the series 
of dynamic dominators can be proven untestable. Figure 9 
shows this case in the multiplier. Then the path generation 
backtracks to g3 immediately and extends to a shorter path 
P2, instead of trying all the equal length paths from g1 to 
g4. 
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Figure 8. Dynamic dominators in a full adder. 
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Figure 9. Dominator heuristic. 

However, the limitation of this heuristic is that it only 
solves the problem of exponential number of paths due to 
the local reconvergence within an adder. It does not solve 
the problem due to the global reconvergence in the adder 
network. Fortunately, as shown in Figure 4, there is not 
much global reconvergence which causes backtracks, 
before a global longest testable path is generated. This 
assumes the local reconvergence problem is solved so that 
there are few backtracks within an adder. 

Unfortunately, if we attempt to generate the longest 
testable paths through some gates/adders in c6288, e.g. the 
black one in Figure 10, the global reconvergence problem 
is much worse. The longest structural paths are highlighted 
in Figure 10. As discussed above, whenever a robustly 
testable path passes from the input A or Cin to the output 
Cout in an adder, it must bypass at least one gate. So the 
delay of a longest robustly testable path through a 
particular adder is several gates less than that of a longest 
structural path through this adder, depending on which 



column the adder is located in. For example, a longest 
robustly testable path through the black adder in Figure 10 
should bypass at least 6 gates. This results in more false 
paths which are longer than the longest testable paths. 
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Figure 10. Longest structural paths through a 

particular adder. 

3. Heuristic 
The analysis in the previous section shows that local 

conflicts are the fundamental reason for false paths in 
c6288, and this is true for most circuits [3]. The 
reconvergence which does not cause conflicts, either local 
or global, exacerbates the problem by introducing an 
exponential number of backtracks for a single local 
conflict. But this type of reconvergence does not cause the 
false path problem by itself. Therefore, it is helpful to 
identify the local conflicts as early as possible to avoid the 
expensive search in the non-solution space (more 
reconvergence causes more expensive search in the non-
solution space). 

The path generator used in [14] includes a 
preprocessing phase. In this phase the maximum structural 
distance from each gate to primary outputs is computed, 
without considering any logic constraint. This value is 
termed the PERT delay. In the path generation phase, 
partial paths are initialized from primary inputs. A partial 
path is a path which originates from a primary input but 
has not reached any primary output. A value called 
esperance [3] is associated with a partial path. The 
esperance is the sum of the length of the partial path and 
the PERT delay from its last node to a primary output. In 
other words, the esperance of a partial path is the upper 
bound of its delay when it reaches a primary output. In 
each iteration of the path generation phase, the partial path 
with the highest esperance value is extended by adding one 
gate. If the last gate of the partial path has more than one 
fanout, the partial path splits. The esperance value 
associated with each new partial path is updated. Then the 
constraints to propagate the transition on the added gate, 
such as non-controlling side input values, are applied. If 
there are any conflicts, the whole search space which 
contains the partial path is trimmed off. 

However, a drawback in this path generator is that it 
only detects the conflict between the constraints at the 
newly added gate and the gates already in the partial paths. 
For the remaining search space, it simply uses PERT delay 
values. Since the PERT delays are computed without 
considering any logic constraint, it is not able to detect a 
local conflict in the unexplored search space until the 
partial path grows to that site. This results in too many 
backtracks if the case shown in Figure 10 occurs. 

The basic idea of our heuristic is to exclude untestable 
subpaths due to local conflicts when computing the PERT 
delay for a gate. We call the new values Smart-PERT 
delays, or S-PERT. Because some untestable subpaths are 
not included in the S-PERT computation, a gate’s S-PERT 
delay is always less than or equal to its PERT delay. 
Moreover, compared to the PERT delay, the S-PERT delay 
is closer to the delay of the longest testable path from that 
gate to a primary output. 

A gate’s PERT delay can be computed using its fanout 
gates’ PERT delays. If the unit delay model is used, 
PERT(gi) = max {PERT(gj) | gj is a fanout gate of gi} + 1. 
Figure 11(a) shows an example, assuming PERT(g3) = 8 
and PERT(g4) = 6 are known. In this example, PERT(g0) = 
10 is computed using PERT(g1) and PERT(g2). 

g0

g1

g2

g3

g4

8 

6

9

7

10

(a)

g0 

g1 

g2 

g3

g4

8

6

9

7

8 

(b)  
Figure 11. Computation of PERT delay (a) 

and S-PERT delay (b). 
When S-PERT(gi) is computed, a user-defined variable 

S-PERT depth is used. If the S-PERT depth is set to d, then 
S-PERT(gi) is computed using S-PERT(gj) where gj is d 
gates from gi in gi’s fanout tree. For example, in Figure 
11(b), if d is set to 2, then S-PERT(g0) is computed using 
S-PERT(g3) and S-PERT(g4). 

The heuristic works as follows. Suppose S-PERT(gi) is 
being computed. G = {gj | gj is d gates from gi in gi’s 
fanout tree}, and G is sorted by S-PERT(gj) in decreasing 
order. The heuristic pops the first gate gj in G and attempts 
to propagate a transition from gi to gj. If there is no conflict 
(the transition successfully reaches gj, with all the 
constraints applied), S-PERT(gi) is set to S-PERT(gj) + d. 
Otherwise, it pops the second gate in G and repeats the 
same procedure. In Figure 11(b), for example, at first the 
heuristic tries to propagate a transition from g0 to g3, but 
finds it is impossible to set the side inputs of g2 and g3 both 
to non-controlling values. Then it tries g4 and does not 
meet any conflict. So S-PERT(g0) is 8. It is obvious that 
increasing the S-PERT depth can make the S-PERT delays 
closer to the delay of the longest testable path from that 



gate to a primary output, but its cost increases 
exponentially. Therefore, there must be some trade-off. 

Since most conflicts are local, with S-PERT delays, the 
path generation is well guided to a testable path, with 
many fewer conflicts, because most of the non-solution 
space is trimmed off during the preprocessing phase. 

4. Experimental Results 
A path generation tool using our heuristic has been 

implemented in Visual C++ and run on Windows 2000 
with a 2.2 GHz Pentium 4 processor and 256 MB memory. 
The unit delay model is used in the experiments. 

In our experiments we consider only robustly testable 
paths, because a robust test requires the on-path signals 
have different initial and final logic values. Therefore the 
test is comparable to a transition test [17]. If neither the 
slow-to-rise nor the slow-to-fall transition fault at a 
gate/line is detectable, it is not possible to generate a 
robustly testable path through that gate/line. Therefore the 
transition fault coverage for c6288 is a good reference to 
see how many gates/lines have testable paths but our tool 
is not able to generate the longest through them (aborts). 

Because a transition test can be composed by pairing 
the stuck-at-0 and stuck-at-1 vectors [18], the transition 
fault coverage achieved by exhaustively pairing all stuck-
at vectors gives the percentage of the gates/lines which 
have at least one robustly testable path. For c6288, the 
percentage is 99.19% [19]. In other words, 0.81% of the 
gates have no transition test. 
Table II. Results for generating the K longest robustly 

testable paths through each gate for c6288. 
K # of Paths Aborts (%) CPU Time (m:s)
  1    726 1.28 30:53 
  2 1 463 1.28 31:33 
  3 2 194 1.49 37:33 
  4 2 942 1.49 38:00 
  5 3 679 1.49 38:10 
  6 4 416 1.49 38:16 
  7 5 127 1.49 38:30 
  8 5 828 1.49 38:33 
  9 6 529 1.57 40:26 
10 7 224 1.57 40:33 
Table II shows the results for generating the K longest 

paths through each gate for c6288. In the experiments we 
set the S-PERT depth to 6. Very little benefit was observed 
for larger S-PERT depths. Column 2 shows the number of 
generated paths. Column 3 shows the percentage of 
aborted gates. In the experiments the path generator gives 
up if the Kth testable path is not found after 50,000 
iterations. An iteration contains a set of operations in 
which a partial path is popped and one more gate is added. 
The CPU time is shown in column 4. Only a few of gates 
which have testable paths passing through get aborted, 
compared to the transition fault coverage. For example, 
when K=1, the percentage is 0.47% (1.28% – 0.81%). Also 

it can be seen that most CPU time is spent on finding the 
first testable path through each gate. It is known that many 
longest testable paths have equal length. So after the first 
one is found, it does not cost much to find more. On the 
other hand, when the abort percentage increases (K=3 and 
K=9), the CPU time slightly jumps. It indicates that the 
CPU time spent on the aborts cannot be neglected, even if 
the abort rate is low. 

5. Conclusions and Future Work 
The ISCAS85 circuit c6288 has an exponential number 

of false paths. The path generation for this circuit using 
existing ATPG tools is very inefficient, compared to other 
circuits. In this paper we have studied the logic structure of 
c6288, and found the features which result in numerous 
false paths. We have proposed a novel heuristic which 
efficiently generates the K longest paths through each gate 
for c6288. Compared to the transition fault coverage, only 
a few of gates get aborted using this heuristic. 

In this work we set the S-PERT delay depth to a fixed 
value. However, if the value is too small, the path 
generator cannot exclude enough local conflicts, and if it is 
too large, its cost is too high. Our future work is to make 
the heuristic automatically learn how large the S-PERT 
delay depth should be for different gates. 
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