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Abstract 
Delay faults are an increasingly important test challenge. 

Traditional delay fault models are incomplete in that they only 
model a subset of delay defect behaviors. To solve this problem a 
combined delay fault (CDF) model has been developed, which 
models delay faults caused by the combination of spot defects, 
parametric process variation, and capacitive coupling. The spot 
defects are modeled as both resistive opens and shorts. The CDF 
model has been implemented in the CodSim delay fault simulator 
which gives more realistic delay fault coverage. The fault 
coverage of traditional test sets has been evaluated on the 
ISCAS85 circuits. 

1. Introduction 
The 2002 International Technology Roadmap for 

Semiconductors (ITRS) [1] projects at-speed testing as an 
increasingly difficult problem. Rising clock frequencies and the 
increasing influence of interconnect on circuit delays are making 
traditional functional and delay test approaches inadequate. 

As shown in Figure 1, spot defects and parametric process 
variation can cause functional failures, delay faults, or reliability 
hazards. A local delay fault is a local delay increase caused by a 
spot defect, such as a resistive open or short. The gate or 
transition fault model targets these faults. Global delay faults are 
slow paths due to process parameter variation such as transistor 
gate length variation. The path delay fault model targets these 
faults. Combined delay faults (CDF) are delay faults caused by a 
combination of spot defect and process variation. By considering 
the entire range of spot defect parameters and process variation, 
the CDF model encompasses both local and global delay faults. 
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Figure 1. Fault types addressed in this work. 

The traditional delay fault models do not completely describe 
all realistic fault behaviors, and so result in incomplete fault 
coverage and poor diagnostic resolution. In particular they do not 
account for pattern-sensitive delay due to signal coupling and 
resistive shorts [2]. Capacitive coupling causes significant 
variation in path delays [3][4][5]. The behavior is even more 
complicated when resistive opens or shorts are combined with 
capacitive coupling [6]. 

In this research we propose to use a physically realistic yet 
economical combined delay fault model to simultaneously 

account for delay faults due to resistive opens and shorts, and 
parametric process variation, in the presence of capacitive 
coupling. At this time we do not consider delays due to inductive 
coupling, power supply noise [7] or substrate noise. 

We have implemented the CDF model in the CodSim 
(Combined Delay Fault Simulator) delay fault simulator and used 
it to evaluate the CDF coverage of existing test sets on the 
ISCAS85 benchmark circuits. The CDF coverage has been 
compared with the fault coverage using traditional fault models, 
such as the transition fault model. As was the case for Boolean 
test of resistive bridges [8], results show that the loss in coverage 
is primarily due to faults with low detection probability [8][9]. 

The remainder of the paper is organized as follows. Section 2 
describes the combined delay fault model and its coverage 
metric. Section 3 describes the fault simulation algorithm and 
Section 4 includes experimental results. Section 5 concludes with 
directions for future research. 

2. Fault Model and Coverage Metric 
In the combined delay fault model it is assumed that there is 

only one spot defect in the circuit, and the circuit is also subject 
to process variation and capacitive coupling. In this model, fault 
detection is probabilistic instead of deterministic. For example, 
suppose there are two paths, P1 and P2, through an open fault site. 
Figure 2 shows the delays of the two paths, and the delays have a 
distribution due to process variation. tmax is the maximum 
specified delay of the circuit. ∆ is the extra delay at the fault site. 
A transition test would test either P1 or P2 and 100% transition 
fault coverage is achieved. This is valid only if ∆ is large. A gate 
delay test would test P1 because P1 has a larger nominal delay. 
Testing P1 can detect a smaller extra delay than testing P2. 
However, in reality testing P1 only does not guarantee 100% 
detection, because when the extra delay is between ∆1 and ∆2, 
testing P1 may not detect the fault while testing P2 may detect it, 
assuming the delays of the two paths are not perfectly correlated. 
A path delay fault test tests both paths, and assumes the path 
delay is pattern independent. However, if the worst-case 
capacitive coupling along the path can be sensitized (the delay 
distribution of P1 becomes P’1), a smaller extra delay ∆’ would 
escape the path delay test. 
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Figure 2. Probabilistic fault detection. 

Thus no traditional delay fault test is able to guarantee 
detection of realistic faults. To achieve 100% fault coverage 
under the CDF model, all the paths which can be the longest path 



through the fault site (in this example, both P1 or P2) must be 
tested, with the worst-case capacitive coupling sensitized. 
Moreover, because of process variation, the coupling 
sensitization is also probabilistic. Therefore, all the test patterns 
which sensitize the worst-case coupling under every process 
parameter combination must be applied. 

A fault coverage metric for the CDF model is developed to 
evaluate the quality of existing test sets. In this research the 
notion of detection probability (DP) [8][9] for a single fault site is 
used. Suppose a test set t has been applied to the circuit. For fault 
site i, and the local extra delay ∆ caused by the spot defect [10], 
the DP is [11]: 

DPi,∆(t) = P(t detects delay fault | chip has a delay fault) 
We define “t detects delay fault” as “at least one path tested 

by t through fault site i is slow”, and for simplicity, we regard 
“chip has a delay fault” when ∆ > ∆0 in Figure 3, where ∆0 is the 
smallest detectable extra delay. This delay can only be detected 
by sensitizing the longest path (P0 in Figure 3) through the fault 
site and this path is assumed to be under the worst process corner. 
Here “longest” means “maximum delay with the worst-case 
coupling sensitized”. Thus the definition can also be written as: 

DPi,∆(t) =P(at least one tested path through i is slow) 
∆ > ∆0 

In Figure 3, suppose paths P1, P2 and P3 are tested by t, and 
P0 is not tested. When ∆0<∆<∆1, DPi,∆(t) is 0; when ∆>∆2, 
DPi,∆(t) is 100%, because the tested path P1 is definitely slow; 
when ∆1<∆<∆2, DPi,∆(t) increases from 0 to 100% as ∆ increases. 
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Figure 3. Example of fault coverage computation. 

The fault coverage metric tells us that there are two ways to 
get a higher-DP test: 

1. Increase the delay of the longest tested path by either 
testing a longer path or sensitizing the worst-case 
coupling, to reduce the 0-DP area between ∆0 and ∆1. 

2. Test more paths whose delays are close to the longest 
tested path (such as P2 in Figure 3) or increase the delay 
of such paths to increase the DP between ∆1 and ∆2. 
Testing a short path (such as P3) does not increase the DP 
because whenever it is slow, the longest tested path P1 
must be slow too. 

The above analysis is for a given local extra delay ∆. For 
fault site i with an arbitrary ∆, the DP for site i is computed as: 

∫ >
⋅=

i0∆∆ i∆ii ∆∆tt
,

d)(p)(DP)(DP ,  

where pi(∆) is the PDF of ∆ at fault site i, and can be computed 
using the PDF of the open or bridge resistance [10]. The DP 
computation for resistive shorts is more complicated than that for 
resistive opens, because both shorted lines can be slowed down. 
The extra delays on both lines must be computed. 

The overall fault coverage for test set t (for both open and 
bridge faults) is: 

%100)(DP)(FC ×⋅=∑i ii wtt  

where wi is the weight for fault site i (∑i wi = 1). In our 

experiments, for simplicity, wi is set to 1/N, where N is the total 
number of open or bridge fault sites, assuming all sites are 
equally likely. 

3. Simulation Algorithm 
The goal of the combined delay fault simulation is to 

compute the detection probability for each fault site, for test set t. 
If the DP is high enough, the fault site can be dropped so that 
ATPG is not required for that site. The DP’s for all the fault sites 
are then used to compute the overall fault coverage, so that the 
quality of the test set is evaluated. 

Figure 4 shows the three phases in the CDF simulation 
algorithm. In the first phase, spot-defect-free timing simulation is 
performed for each vector pair. After the simulation, the initial 
and final logic values and the nominal transition time of the last 
event for each line are known. Figure 5 shows an example. The 
italic numbers next to the transition symbols indicate the 
transition time, assuming the unit gate delay model is used. S1 or 
S0 indicates a stable logic value 1 or 0 on the line. 

1. For each test vector pair, run spot-defect-free timing 
simulation and identify the robust/non-robust 
propagation paths from each line to primary outputs. 

2. Check the validation of the non-robustly sensitized paths 
through a line, by introducing a spot defect at that line 
and running fault simulation. 

3. Run fault simulation considering coupling for the 
selected long paths for each fault site. 

Figure 4. CDF simulation algorithm. 
Then the robust/non-robust propagation paths from each line 

to primary outputs are identified. A line’s robust propagation 
paths can be computed using its immediate fanout lines’ robust 
propagation paths. In Figure 5, suppose line d has a robust 
propagation path P1 with length 6, and line e has path P2 with 
length 7. The robust propagation paths for line b are computed by 
checking the final logic values on the side inputs of gate G1 and 
G2. Then two paths are identified: b-P1 with length 7 and b-P2 
with length 8. Because the propagation paths are robust, the slow 
signal is able to propagate through these paths independent of the 
delays on the side inputs to the paths. Therefore the extra delay ∆ 
on a line must be detected if ttrans + ∆ + lprop > tmax, where ttrans 
and lprop are the transition time and propagation path length 
associated with that line, respectively. In the simulation, since 
ttrans and lprop are statistical values (with PDFs), the computed ∆ is 
a statistical value too. For resistive shorts, the sensitization 
condition, i.e. the opposite logic value on the other shorted line, 
must be checked. 
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Figure 5. Robust propagation path identification. 
The non-robust propagation paths can be identified in a 

similar way. The difference is that if there is no transition on a 
line, the non-robust propagation paths from that line must also be 
computed. Line g in Figure 6 is an example. The reason is that a 
spot defect on line d may generate a glitch on g, and the 
computation of the non-robust propagation paths from d uses g’s 
propagation paths. The complexity of phase 1 is O(V·C), where V 

(2)

(1)

(3)

(4)



is the number of vectors and C is the circuit size (number of lines 
in the circuit). 

A problem with the non-robust propagation paths is that the 
fault detection through these paths is dependent on the delays on 
the side inputs to the path. In Figure 6, an extra delay on line b 
does not affect the transition time on line h, even though line b 
has a non-robust propagation path. Therefore, the validation of 
these paths must be checked (phase 2). After phase 1, each line 
has a few non-robust propagation paths. The validation check can 
be performed by introducing an extra delay ∆ on the line, where 
∆ = tmax – ttrans – lprop, and running fault simulation for the vector 
which sensitizes this path, to check if the slow signal can be 
detected at any primary output. This procedure starts from the 
smallest ∆. If a small ∆ can be detected through a non-robust 
propagation path, the validation check for the paths which can 
only detect large ∆ is not necessary, because testing those paths, 
such as P3 in Figure 3, does not increase the fault coverage. 
Experiments show that normally only a few paths must be 
checked for each line. 

G1 

G2 S1 

8 
a-d-g-P1(9) 

a 

c 

b b-d-g-P1(9) 
7 

d-g-P1(8) 

8 

d 

e 

S1 

G3 
9 

f 

g-P1(7) 
S1 

G4

g 

7 
P1(6) h

8

 
Figure 6. Non-robust propagation path identification. 
It is possible that some functional sensitizable paths are 

missed. However, because these paths always appear in pairs and 
the delay is determined by the shorter one, in most cases they do 
not contribute to the fault coverage. Thus these paths are not 
checked unless there is no long robust or non-robust propagation 
path through the fault site. 

In phase 3, the extra delay due to coupling is computed. 
Similar to phase 2, phase 3 introduces an extra delay ∆ at the 
fault site, where ∆ can cause one propagation path (either robust 
or validated non-robust) to be slow, and runs the fault simulation 
considering coupling for the vector sensitizing the path. The 
reason why ∆ should be introduced is because the coupling 
alignment is dependent on ∆. Handling capacitive coupling is a 
classic “chicken and egg” problem, because the victim’s 
transition time depends on the aggressor’s timing window, which 
could depend on the victim’s output [12]. We solve this problem 
by iterative simulation, which is similar to the algorithm used in 
[12]. Similarly, phase 3 is only performed for the long paths. 

4. Simulation Results 
A combined delay fault simulator CodSim was developed in 

Visual C++ and run on Windows 2000 with a 450 MHz Pentium 
III processor. In the experiments, random coupling net pairs with 
realistic coupling capacitance values are included. Buffer-to-
buffer delays are assumed to have a normal distribution with 3σ 
= 15% of the nominal delay. The smallest detectable open 
resistance is computed using the longest sensitizable path through 
the fault site [13], and it is assumed that the path delay would 
increase by 3% if the worst-case coupling is sensitized [4]. For 
shorts, different cases for the two shorted lines are analyzed and 
the largest detectable resistance is computed. 

Table I shows the open fault coverage for the ISCAS85 
circuits, simulated using 10 000 random vectors and transition 
tests, which are generated by FastScan using a backtrack limit of 
200. Circuit c2670 is not included due to a circuit layout 

extraction problem. In this work, it is assumed that 80% of the 
open faults have infinite resistance, while 20% are resistive, with 
log(R) uniformly distributed, where R is the open resistance [14]. 

Table I. Fault simulation results for resistive opens. 
10 000 Random Vectors Transition Test 

Circuit Open 
Sites 

Tran. 
FC 
(%) 

CDF 
Coverage 

(%) 

Sim. 
Time 

(s) 

# 
Vec 

Tran. 
FC 
(%) 

CDF 
Coverage 

(%) 

Sim. 
Time 

(s) 
c432    432 99.2 99.1/97.6   1.9 182 99.4 98.8/96.6 0.1 
c499    499 99.1 98.9/94.0   3.0 184 99.4 98.6/93.6 0.1 
c880    880 100 99.3/96.0   6.2 182 100 98.8/96.2 0.1 
c1355 1 355 99.5 98.6/94.0   7.5 550 99.8 96.4/93.4 0.6 
c1908 1 908 95.8 94.9/92.4 12.1 500 99.7 98.4/96.3 1.2 
c3540 3 540 91.8 91.1/88.6 22.1 608 96.3 94.9/93.0 1.8 
c5315 5 315 94.9 94.7/92.7 49.1 402 99.5 99.0/98.4 2.7 
c6288 6 288 99.1 96.1/93.6 44.6 190 99.2 96.2/94.2 1.1 
c7552 7 552 92.1 91.9/89.7 70.7 696 98.4 98.1/96.4 5.8 

Column 2 shows the number of open fault sites, assuming an 
open may happen on the inputs and output of any gate in a 
circuit. Columns 3 and 7 show the fault coverage using the 
transition fault model, in which the local delays are assumed to 
be large. Recent research [15] shows that real delay fault 
coverage is slightly higher, since most delay faults are due to 
resistive opens that affect both transitions. The fault coverage 
using the CDF model is listed in columns 4 and 8, assuming a 
full-speed/half-speed test is applied. For the long random test set, 
the fault coverage using a full-speed test is close to its transition 
fault coverage (<1% difference), because a fault site has high 
probability to have many long paths tested. The CDF coverage 
loss for the random test set is primarily due to the faults which 
have zero detection probability, i.e. no path through the fault is 
tested. The transition test ensures that at least one path through 
each non-redundant fault site is tested, therefore the CDF 
coverage loss is primarily due to the fact that not enough long 
paths through the fault site are tested. Circuit c6288 is an 
interesting case because the CDF coverage is not close to the 
transition fault coverage. The reason is that for this circuit, it is 
very easy to sensitize one path through each gate/line but it is 
very hard to sensitize a long path through a gate/line. The CDF 
coverage for testing the 10 longest non-robustly testable paths 
through each gate (10-LPEG test) [13] is 99.9%+, if the 
redundant open faults are removed. The number of vectors is 
listed in Table III. 

Table II. Fault simulation results for resistive shorts. 
10 000 Random Vectors Transition Test 

Circuit Bridge 
Sites 

0 Ω 
FC 
(%) 

CDF 
Coverage 

(%) 

Sim. 
Time 

(s) 

# 
Vec 

0 Ω 
FC 
(%) 

CDF 
Coverage 

(%) 

Sim. 
Time 

(s) 
c432      821 99.4 88.1/84.4   1.4 182 93.3 81.4/81.0 0.1 
c499   1 102 99.9 93.5/89.4   2.2 184 96.5 86.7/81.3 0.1 
c880   1 421 99.6 90.9/86.2   2.4 182 95.7 85.3/83.5 0.1 
c1355   2 488 99.5 88.6/84.2   7.0 550 97.3 84.8/81.6 0.3 
c1908   4 007 98.3 92.0/91.9   5.1 500 96.8 88.4/88.1 0.4 
c3540   8 919 96.8 87.0/86.7 17.9 608 93.6 80.3/80.0 1.4 
c5315 12 168 98.0 94.3/94.0 18.6 402 97.1 89.4/89.1 1.3 
c6288 14 170 99.2 91.6/91.4 22.5 190 92.9 78.8/78.6 1.0 
c7552 12 156 94.2 87.2/86.6 25.7 696 95.8 82.8/81.9 2.8 

Table II shows the resistive bridge fault coverage for the 
ISCAS85 circuits. Random non-feedback shorts are used. The 
number of shorts is approximately twice the number of lines in 
the circuits. Shorts between lines feeding the same gate are not 
included. Shorts between the signal lines and power/ground grid 



are not considered because they are more likely to behave as 
stuck-at or transition faults. The bridge resistance is assumed to 
be uniformly distributed between 0 Ω and 40 kΩ [16]. 

Columns 3 and 7 show the fault coverage using the 0 Ω 
bridge fault model. For both random and transition test sets, there 
is a large CDF coverage loss, and it can be seen that the CDF 
coverage does not increase much if the test speed is increased. 
Figures 7a and 7b explain the phenomenon. The delay caused by 
most resistive shorts can be plotted as shown in Figure 7 [10]. 
For most shorts, the slack of the longest sensitizable path through 
either shorted line is not very tight (Figure 7a), therefore the 
coverage loss, which is the range between the two dotted vertical 
lines, is small, even if a half-speed test is applied. However, for 
some shorts with one shorted line on a critical path, a large 
coverage loss occurs if the longest sensitizable path through that 
line is not tested (Figure 7b). 
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Figure 7. Delay vs. Bridge resistance. 

It can also be seen from column 3 in Table II that the long 
random test sets do not result in many 0-DP bridge faults though 
they cause many 0-DP open faults. This is because a bridge fault 
can be detected by either shorted line in most cases. However, 
since large bridge resistance can be detected only through the line 
with weaker drivers, high 0 Ω bridge fault coverage does not 
necessarily indicate high CDF coverage for resistive shorts. 
Transition tests have low CDF coverage because they do not have 
high probability to set the opposite logic values on the other 
shorted line when a transition occurs on the line with weaker 
drivers. 

Table III shows the results for resistive shorts using the 10-
LPEG tests generated in [13]. Column 2 shows the number of 
vectors. The vectors are not compacted so one vector pair targets 
one path. Column 3 shows the fault coverage using full-speed 
tests. It can be seen that by testing the 10 longest paths through 
each gate, higher CDF coverage for resistive shorts is achieved. 
Though the tests do not aim at the bridge faults, by testing the 
shorted line with weaker drivers at least 10 times, it is likely that 
at least one test vector sets the opposite logic value on the other 
shorted line. And since the fault is propagated through many long 
paths, the coverage loss is small, and primarily due to the fact 
that the worst-case coupling for those paths is not sensitized. 

Table III. Results for resistive shorts using 10-LPEG tests. 
 Circuit # Vec FC (%) Time(s)  Circuit # Vec FC (%) Time(s)
 c432    840 97.4 0.2  c3540   7 784 99.7 13.6 
 c499 3 064 98.4 0.8  c5315   8 720 99.6 18.2 
 c880 2 046 98.5 0.6  c6288 14 448 99.1 35.7 
 c1355 3 922 97.6 2.9  c7552 11 976 98.4 30.2 
 c1908 3 108 99.5 2.0 

 

    

5. Conclusions and Future Work 
In this work we have described a physically realistic 

combined delay fault model incorporating the delay effects of 
spot defects, parametric process variation and capacitive 
coupling. The CDF model uses the accurate delay models we 

have developed [10]. We have implemented the CDF model and 
a fault coverage metric in the CodSim delay fault simulator. 

Experiments show that full-speed tests are able to detect most 
open faults, while the bridge fault coverage is not high, using 
some traditional test sets. The reason is because for some bridge 
faults, large coverage loss occurs if the longest true paths through 
them are not tested. Due to this reason, testing the K longest 
paths through each gate results in high CDF coverage for 
resistive shorts. 

The future direction of our work is to use the CodSim 
simulator in the CodGen [13] delay test ATPG framework. So far 
CodGen only generates the K longest paths through each gate. In 
order to maximize the CDF coverage for resistive shorts, CodGen 
should target the bridge faults and maximize the delay due to 
coupling. On the other hand, it must incorporate spatial process 
correlation to reduce the test size without coverage loss. 
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