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Abstract 
The path delay fault model is the most realistic model 

for delay faults. Testing all the paths in a circuit achieves 
100% delay fault coverage according to traditional path 
delay fault coverage metrics. These metrics result in 
unrealistically low fault coverage if only a subset of paths 
is tested, and the real test quality is not reflected. For 
example, the traditional path delay fault coverage of any 
practical test for circuit c6288 is close to 0 because this 
circuit has an exponential number of paths. In this paper, 
a statistical and realistic path delay fault coverage metric 
is presented. Then the quality of several existing test sets 
(path selection methods) is evaluated in terms of local and 
global delay faults using this metric, in comparison with 
the transition fault and traditional path delay fault 
coverage metrics. 

1. Introduction 
Delay testing detects timing defects and ensures that 

the design meets the desired performance specifications. 
The three commonly used delay fault models are the 
transition fault model [1], the gate delay fault model [2], 
and the path delay fault model [3]. The transition fault 
model assumes that the delay fault affects only one gate in 
the circuit, and the extra delay caused by the fault is large 
enough to prevent the transition from reaching any primary 
output within the specification time. In other words, the 
transition fault can be detected on any sensitized path 
through the fault site. The transition fault coverage is 
measured as the percentage of faults which are detected by 
a test set [4]. The gate delay fault model is more general 
than the transition fault model because it considers the 
amount of extra delay due to a defect. Therefore, a gate 
delay fault may only be detected through a long path. The 
quality of a test set is defined as how close the minimum 
actually detected delay fault sizes are to the minimum 
possibly detectable fault sizes [5]. The main advantage of 
these two models is that the number of faults in the circuit 
is linear in the number of gates. Also, the stuck-at fault test 
generation procedure can be easily modified for transition 
fault test generation [6]. 

Under the path delay fault model a circuit is considered 
faulty if the delay of any of its paths exceeds the 

specification time. The path delay fault model is more 
realistic in modeling physical delay defects because the 
model can also detect small distributed delay defects 
caused by process variation, or the combination of local 
and distributed delay. However, a major limitation of this 
fault model is that the number of paths in the circuit (and 
therefore the number of path delay faults) can be 
exponential in the number of gates. For example, ISCAS85 
benchmark circuit c6288, a 16-bit multiplier, has close to 
1020 paths. 

Many techniques have been used to reduce the number 
of paths that must be tested in the path delay fault model. 
The simplest idea is to test the paths with maximum delays 
in the circuit. These paths are also called the longest paths 
or critical paths. However, circuit optimization tends to 
compress the distribution of path delays in a circuit, so 
many paths are close to the maximum delay [7]. Because 
of manufacturing process variation, any of these paths can 
be the actual longest path. Therefore a group of longest 
paths must be selected for testing. In practice, the path 
selection criteria can be based on if the nominal path delay 
is more than a certain threshold, e.g. 80% of the maximum 
specified delay of the circuit. It is assumed that the delays 
of the selected paths bound the maximum circuit delay 
with high confidence. The path selection is much more 
realistic if the structural and spatial correlations between 
path delays are used [8], and then the number of paths that 
must be tested can be significantly reduced. However, 
delay faults are caused by both local and global process 
disturbances during IC manufacturing [9], or their 
combination. An example of a local disturbance is a 
particle that causes a resistive bridge between two nets, or 
a resistive contact. An example of a global disturbance is 
variation in transistor gate length across a chip. The delay 
faults caused by local disturbances are termed local delay 
faults [10] and those caused by global disturbances are 
termed global delay faults [8] or distributed path delay 
faults [11]. The path delay fault model assumes that delay 
faults are only caused by global delay faults. Thus if no 
path through a local delay fault site is selected for testing, 
the delay fault cannot be detected. To solve this problem, 
some path selection methods ensure that for every line in 
the circuit, the longest path through it must be selected 
[12][13][14][15]. 



Unfortunately, there is little research focusing on 
realistic delay fault coverage estimation. Therefore it is 
hard to evaluate the quality of different path selection 
methods. The traditional metric of path delay fault 
coverage is the percentage of the paths which are tested 
under robust [3][16], non-robust [16], or functional [17] 
sensitization criteria, that is, coverage = number of tested 
paths / total number of structural paths. A structural path is 
a sequence of gates and nets without considering 
sensitization. Based on this metric, testing p long paths has 
the same fault coverage as testing p short paths, which 
does not reflect the real test quality. In addition, since the 
total number of structural paths is exponential in the 
number of gates, clearly this fault coverage metric results 
in very low fault coverage for any test set, which is far 
from the reality. Some research eliminated untestable paths 
[18][19], and then the coverage = number of tested paths / 
number of total testable paths. But these methods are very 
expensive because the sensitization of all the paths must be 
checked and the coverage is still unrealistically low 
(around 20%). For example, as circuit c6288 may have an 
exponential number of testable paths [20], the traditional 
path delay fault coverage of any practical test is close to 0. 

In this work, the traditional path delay fault model is 
extended to a more realistic delay fault model, which 
assumes that delay faults are caused by global delay faults 
only or the combination of local and global delay faults. 
Our model can be seen as a cross between the path and 
gate delay fault models. In addition, a new statistical delay 
fault coverage metric is proposed. Capacitive coupling is 
not considered here because it makes path delays pattern-
sensitive, which is not assumed in the traditional path or 
gate delay fault models. 

The remainder of the paper is organized as follows: 
Section 2 analyzes the path delay correlation. Section 3 
describes the realistic delay fault coverage metric. Section 
4 includes experimental results and compares the delay 
fault coverage for different test sets. Section 5 presents our 
conclusions with directions for future research. 

2. Path Delay Correlation 
Any two paths in the circuit have correlation in delays. 

Two paths have structural correlation when they share a 
common path segment. For example, in Figure 1 path a-d-
e and b-d-e are structurally correlated because they share 
segment d-e. Two paths can also have spatial correlation 
because the path delays are functions of the manufacturing 
process parameters, such as transistor gate length, which 
are spatially correlated. For two paths which are physically 
close to each other, the delay correlation is high because 
the paths have very similar process parameters. 
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Figure 1. Example of structural correlated paths. 

Figure 2 shows the delay space [11] for two paths, 
assuming the path delay is a one-dimensional function of 
process parameters. The delay space is the bounded region 
in which the probable delay value combinations are 
represented. It is assumed that each path has min-max 
delays. If the two paths have no correlation, the delay 
value combination can be anywhere within the rectangle. If 
they are perfectly correlated, the delay space shrinks to a 
line, which means if path 1 has the max (min) delay under 
a combination of certain process parameters, path 2 also 
reaches its max (min) delay under the same combination of 
process parameters. In reality, the correlation is 
somewhere in between, and the realistic delay space is the 
shaded area. Using correlation information, the delays on 
the untested paths can be predicted by the delays on the 
tested paths [21]. 
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Figure 2. Delay spaces for different path correlations. 

An inter-die process variation model [22] is used in this 
work. In this model, the delay of a path is expressed as a 
linear function of process variables. If the delay of path p1 
is less than that of path p2 under any process parameter 
combination, it is said that p1 is covered by p2. Thus, if p2 
is tested, p1 does not have to be tested. One limitation of 
this model is that it does not consider intra-die process 
variation. However, by assuming 100% intra-die process 
correlation, the upper bound of delay fault coverage can be 
computed, as shown in the next section. 

3. Delay Fault Coverage Metric 
A realistic delay fault coverage can be computed as the 

percentage of faulty chips that can be detected as faulty by 
a test set [11]. If presented in a probability formula, the 
coverage for test set t is: 

P(t detects delay fault | chip has a delay fault) (1) 
Because this is a general metric and model-

independent, to make it usable, it is necessary to map this 
abstract metric to a realistic delay fault model, which 
considers both local and global delay faults. 

In this work it is assumed that there is at most one local 
delay fault (or no local delay fault) that can occur on any 
single line in the circuit. We term the fault site the position 
of the local delay fault. The whole circuit is also subject to 
process variation, which may cause a timing failure by 
itself (global delay fault) or in combination with a local 
delay fault. 



Under this model fault detection is probabilistic instead 
of deterministic. For example, suppose there are two paths, 
P1 and P2, through a resistive open fault site, and the local 
extra delay is not large enough for either path to be 
definitely slow. Figure 3 shows the delay space for this 
fault. tmax is the maximum specified delay of the circuit. 
The circuit has some probability that path 1 or 2 is slow 
(Delay < tmin is not considered in this work). Suppose test 
set t1 tests path 1 only and test set t2 tests path 2 only. 
Neither t1 nor t2 can guarantee the detection of the fault, 
e.g. t1 cannot detect the delay fault in area A. Instead each 
test set only has some probability of detection. Both test 
sets are required to guarantee detection. In this research the 
notion of detection probability (DP) [23] for a single fault 
site is used. 
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Figure 3. Delay space of a fault. 

Using this probability model, the general metric 
expressed in formula (1) can be translated into formula (2) 
to compute the DP for fault site i with local extra delay ∆ 
(the size of the local delay fault): 

DPi,∆(t) =P(at least one tested path through i is slow | 
at least one path through i is slow)  (2) 

In the example whose delay space is shown in Figure 3, 
according to formula (2), if test set t tests path 1 only, the 
DP is area(B∪C)/area(A∪B∪C); if t tests path 2 only, the 
DP is area(B∪A)/area(A∪B∪C); and if t tests both paths, 
the DP is 100%. 

The above analysis is for a given local extra delay ∆. 
For fault site i with an arbitrary ∆, the DP for site i is 
computed as: 

∫ >
⋅=

i0∆∆ i∆ii ∆∆tt
,

d)(p)(DP)(DP ,   (3) 

where ∆0,i is the value of local extra delay below which 
there is no delay fault. pi(∆) is the PDF of ∆ at fault site i, 
and is computed using the PDF of delay caused by 
physical defects, such as resistive opens [24] or shorts 
[25]. 

The overall fault coverage for test set t is: 
%100)(DP)(FC ×⋅=∑i ii wtt   (4) 

where wi is the weight for fault site i (∑i wi = 1). wi 
depends on the location of the fault [24]. For example, the 
fault sites with many long paths through them are more 
likely to cause delay faults than the fault sites which have 
only short paths through them. Therefore, testing more 
paths through a high weighted fault site is an efficient way 

to increase the fault coverage. wi is also sensitive to the 
ratio of local/global delay faults. If the ratio is high, the 
weights are almost equal for all fault sites. If it is low, the 
fault sites with only short paths passing them through can 
have weights close to 0. In this work equal weights are 
used for simplicity. 

If no local delay fault is considered, only formula (2) is 
used in the computation, with ∆=0, and i is removed 
because the whole circuit, instead of a particular site, is 
considered. 

According to formula (2), if the path delays are not 
independent variables (and in reality, they are not), the DP 
computation is dependent on the delay space. For example, 
in Figure 3, the areas of A, B, C change if the delay space 
changes, and then the DP changes accordingly. Therefore, 
if accurate correlation information is not known, the DP 
computation is not easy. To solve this problem, two 
extremities are assumed. If no correlation is assumed, path 
delays are independent variables. This assumption results 
in the lower bound of fault coverage. If 100% intra-die 
process correlation is assumed (only inter-die process 
variation is considered) [22], the upper bound of fault 
coverage is computed. 

Applying this coverage metric (formulae 2-4) is 
inexpensive because only a small subset of paths must be 
considered. For example, Figure 4 shows the delays of four 
paths, each having a distribution due to process variation, 
through a certain fault site. Suppose path P1 is tested by t, 
and the longest testable path P0 is not tested. When 
∆0<∆<∆1, DPi,∆(t) is 0; when ∆>∆2, DPi,∆(t) is 100%, 
because the tested path P1 is definitely slow; when 
∆1<∆<∆2, DPi,∆(t) increases from 0 to 100% as ∆ increases. 
Thus, the fault coverage computation is required only in 
this interval. The main cost to compute the fault efficiency, 
which is the number of tested faults over the number of 
testable faults, is on the sensitization check for all the paths 
whose length is within this interval. However, if all the 
structural paths are assumed testable, a lower bound 
coverage can be computed and experiments show the error 
on ISCAS85 circuits is <4%. The cost of enumerating 
structural paths is low because the total number of 
structural paths through a gate can be computed from the 
number of paths of its immediate fanin and fanout gates. 
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Figure 4. Fault coverage computation. 

The fault coverage metric suggests a test strategy: 
1. Apply transition fault tests to detect large local 

delay faults, and from industrial experience most 
local delay faults are large. 



2. Apply at-speed test to one of the longest paths, e.g. 
the path with maximum nominal delay, through 
each gate or line, to eliminate or reduce the 0-DP 
area between ∆0 and ∆1 in Figure 4, because this is 
the second largest coverage loss factor. 

3. Test more possible longest paths (such as P2 in 
Figure 4, if P0 does not exist) to increase the DP 
between ∆1 and ∆2. 

Figure 5 shows the conceptual relation between fault 
coverage and the percentage of tested paths, using different 
fault coverage metrics. The paths are sorted by their 
nominal delays in descending order. If there is no local 
delay fault, the fault coverage increases quickly after the 
first several potentially critical paths are tested, and 
reaches 100% after all potentially critical paths are tested. 
If the percentage of local delay faults is high (in reality it 
is), the curves have some “jumps” because at these points 
the first path through some fault sites gets tested. It is clear 
that the new fault coverage metric is closer to industrial 
experience and more realistic. The traditional fault 
coverage is assumed to be computed as the number of 
tested paths over the total number of testable paths. 
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100%
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Figure 5. Fault coverage vs. percentage of tested paths. 

4. Experimental Results 
ISCAS85 benchmark circuits are used in the 

experiments. The TSMC 180 nm technology with five 
metal layers is used to generate the layouts. Delays for 
each gate and interconnect are extracted and assumed to 
have a Normal distribution with 3σ=10% of the nominal 

value. The transistor gate length, the width and thickness 
of the five metal layers and the thickness of the five 
interlayer dielectrics are considered parameters in the 
process variation model [22]. The maximum specified 
delay tmax is set to be 8% longer than the nominal delay of 
the longest testable path. 

In the first experiment resistive opens are assumed on 
gate outputs. It is assumed that 80% of the opens have 
infinite resistance so that they can be detected by a 
transition fault test, and the remaining 20% are resistive, 
with log(R) uniformly distributed, where R is the open 
resistance [24]. This case is similar to the traditional gate 
delay fault model because the local delay fault size has a 
distribution. The delay fault coverage developed in this 
work is more accurate than the gate delay fault coverage 
because process variation is also considered. The KLPG 
(K longest testable paths per gate) test generator [26] is 
used to generate K=500 testable paths through each gate 
(this process takes <10 minutes), for the fault coverage 
computation purpose. For >99% of the gates, K=500 
covers all the possible longest testable paths through the 
gate, assuming a ±10% path delay variation. The fault 
efficiency is computed because the fault sites with no 
transition fault test are not included in the computation and 
the false paths are eliminated by the KLPG test generator. 

Table 1 shows the fault efficiency for the ISCAS85 
circuits, using three test sets: 1. Transition fault test set; 2. 
KLPG-2 test set, which tests two longest paths through 
each gate, with one path having a rising transition and the 
other having a falling transition at the gate output; 3. 
Critical path test set, which tests the Csize longest testable 
paths throughout the circuit, where Csize is the circuit size 
(number of gates in the circuit), so that the number of 
vectors in this test set is about the same as the KLPG-2 test 
set. The transition fault test set is generated by a 
commercial ATPG tool. The other two test sets are 
generated by the KLPG test generator, and compressed by 
a simple greedy algorithm. All three test sets are assumed 
to be applied at speed. 

Table 1. Fault efficiency comparison using the statistical path delay fault coverage metric. 
Resistive Opens & Process Variation Process Variation Only # of Vectors TF KLPG-2 Critical TF+C KLPG-2 Critical Circuit 

TF KLPG-2 Critical UB(%) LB(%) UB(%) LB(%) UB(%) UB(%) LB(%) UB(%) LB(%) UB(%)
c432   91   97    111 98.85 99.64 99.98 57.60 57.78 99.51 100 100 100 100 
c499   92 373    200 98.68 99.59 99.96 25.88 25.95 99.27 99.81 99.94 100 100 
c880   91 148    224 98.82 99.61 99.95 24.28 24.38 99.25 99.83 100 100 100 
c1355 225 433    545 97.23 99.53 99.89 18.72 18.80 98.01 99.72 100 100 100 
c1908 250 343    878 98.51 99.44 99.92 31.88 31.99 99.11 99.77 100 100 100 
c2670 178 435    802 98.69 99.49 99.78 15.28 15.35 98.94 99.25 99.75 100 100 
c3540 304 837 1 426 97.97 99.51 99.90 25.56 25.66 98.60 100 100 100 100 
c5315 202 468    610 99.03 99.50 99.83 10.62 10.68 99.18 99.17 100 100 100 
c6288   95 981 1 521 97.51 99.12 99.65 12.76 12.83 98.14 96.44 100 98.89 100 
c7552 348 936 1 764 98.96 99.61 99.93 28.43 28.50 99.35 100 100 100 100 



Column 5 shows the fault efficiency for the transition 
fault test. For most fault sites, the transition fault test does 
not test through the longest paths, but the fault efficiency is 
still reasonably high. The reason is that it is assumed that 
80% of the resistive opens cause large extra delay. These 
numbers reflect the reality that the transition fault test 
detects most of delay faults. It should be noted that these 
numbers are the upper bound because it is too expensive 
for the KLPG test generator to generate all the paths whose 
length is close to the paths that the transition fault test 
sensitizes (since most of these paths are short, and the 
KLPG test generator generates long paths first). Therefore 
a 100% path delay correlation is used to compute the upper 
bound. 

Columns 6 and 7 show the lower and upper bound of 
the fault efficiency for the KLPG-2 test set. The lower 
bound is computed by assuming no path delay correlation 
(even no structural correlation). The upper bound is 
computed by using an inter-die process variation model 
[22] and assuming 100% intra-die process correlation. The 
bounds are close because the majority of delay faults can 
be modeled as transition faults. It can be seen that the 
upper bound fault efficiency is almost 100% for most 
circuits. The reason is that for most fault sites, only 2-3 
paths can be the longest paths with process correlation. 
Thus most fault sites have 100% DP. The fault efficiency 
upper bound for circuits c2670, c5315 and c6288 is lower 
than the other circuits because the number of longest paths 
per fault site for these circuits is relatively large even with 
process correlation. Columns 8 and 9 show the lower and 
upper bound of the fault efficiency for the critical path test 
set. The coverage loss mainly comes from the fact that 
many local delay fault sites have no test, because they are 
not on a long path. Column 10 shows the upper bound of 
the fault efficiency for applying both transition fault and 
critical path test sets, which are used in industry. The 
higher fault efficiency of this test reflects industrial 
experience [27]. 

Figure 6 shows the fault efficiency for c7552, assuming 
the K value in the KLPG test increases from 2 to 10. As 
can be seen, only a small number of paths are needed 
through each fault site to achieve high fault efficiency, and 
the benefit of testing one of the longest paths (the fault 
efficiency increase from the transition fault test to the 
KLPG-2 test) is more significant than that of testing more 
long paths (the increase from the KLPG-2 test to the 
KLPG-10 test). 
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Figure 6. Fault efficiency for c7552, assuming the K 
longest paths through each gate are tested (K=2,…,10). 

In the second experiment, no local delay faults are 
assumed. The circuits are only subject to inter-die process 
variation. This case is equivalent to the traditional path 
delay fault model, and the new metric computes a more 
accurate and reasonable fault coverage. The KLPG test 
generator is used to generate all the potentially critical 
paths to compute the fault efficiency (the CPU time is <5 
minutes per circuit). 

Columns under “Process Variation Only” in Table 1 
show the fault efficiency for this case, using the KLPG-2 
and critical path test set. The fault efficiency for the 
transition fault test is 0 for all these circuits, since no 
potentially critical paths are tested by luck (transition fault 
test usually sensitizes short paths to keep the test 
generation cost low). It can be seen that the KLPG-2 test 
results in high fault efficiency. This is because many paths 
in this test set are also potentially critical paths. After the 
process correlation is applied, most paths are trimmed and 
for most circuits there are <10 “must be tested” paths 
remaining (circuit c2670 has 14 paths remaining, which is 
the maximum number). The experiments show that the 
KLPG-2 test set covers all the “must be tested” paths for 
most circuits (KLPG-2 for c499 misses one path and 
KLPG-2 for c2670 misses two). It is not surprising that the 
critical path test set achieves higher fault efficiency, and 
the number of potentially critical paths in all the circuits is 
less than Csize, except for c6288. 

For comparison, Table 2 shows the fault efficiency for 
the three test sets using the traditional transition and path 
delay fault coverage metrics. It can be seen that the 
transition fault efficiency does not reflect the real test 
quality since both transition fault and KLPG-2 tests have 
100% fault efficiency. The traditional path delay fault 
efficiency for the transition fault test is not included 
because the cost is too high to identify all the sensitized 
paths. The total number of testable paths, which is used in 
the traditional path delay fault efficiency computation, is 
from the RESIST test generator [20]. As some aborted 
paths may also be testable, the numbers in columns 5 and 6 
are the upper bound. For example, in circuit c6288 12 592 
testable paths are found by RESIST and about 1018 paths 
are aborted. The traditional path delay fault efficiency is 
much lower than the real test quality. 
Table 2. Fault efficiency comparison using traditional 

delay fault coverage metrics. 
Transition FE (%) Path Delay FE (%) Circuit TF KLPG-2 Critical KLPG-2 Critical 

c432 100 100 57.81   3.01   4.30 
c499 100 100 25.99   0.28   0.15 
c880 100 100 24.41   2.19   2.38 
c1355 100 100 18.86   1.94   2.41 
c1908 100 100 32.04   0.37   0.90 
c2670 100 100 15.48   4.44   8.34 
c3540 100 100 25.73   1.01   1.89 
c5315 100 100 10.79   1.71   2.83 
c6288 100 100 13.08 11.69 19.19 
c7552 100 100 28.55   1.82   4.07 



5. Conclusions and Future Work 
We have proposed a realistic delay fault coverage 

metric which considers the combined effects of spot 
defects and process variation. The traditional path delay 
fault coverage based on the percentage of tested paths is 
too low and does not reflect the real quality of a test set. 
The new coverage metric considers inter-die process 
correlation and suggests that a transition fault test should 
be applied first to detect most large delay faults, then an at-
speed test should cover every line in the circuit by testing 
one of the longest paths through the line, and finally test 
more long paths through each line to increase the delay 
fault detection probability under process variation. As can 
be seen in Figure 6, when the number of tested paths per 
gate K becomes larger, the coverage levels off. To further 
increase coverage, more paths for the lines with relatively 
low detection probability must be tested. Assigning 
different K values for different lines is part of our future 
work. For simplicity, only inter-die process variation and 
single path sensitization is considered in this work. Intra-
die process variation and multi-path sensitization will be 
considered because some local delay faults are only 
detectable through a set of paths. 

A local delay fault can be caused by resistive shorts as 
well as opens, which are assumed in this work. The fault 
coverage metric for resistive shorts is more complicated 
but can be extended from this work. The single local delay 
fault site assumption is still valid because it has been 
shown that in general the extra delay caused by a resistive 
short can appear on only one of the bridged nets [25]. 
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