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Abstract

Bridging faults in CMOS circuits are usually modeled
as a wired-OR, wired-AND, or small fixed resistance. Real
bridging faults have a resistance distribution ranging from
very small to quite large. The parametric model has been
proposed to handle this resistance distribution, along with
table-oriented approaches that are accurate and fast.
Fault simulators and a test generator have been developed
using these models. Prior approaches were too slow to
simulate or generate large test sets, handle large circuits,
or analyze a wide variety of different test sets. We have
developed PROBE', a pseudo-PPSFP simulator for
resistive bridging faults that is significantly faster while
maintaining circuit-level accuracy. We have used PROBE
to analyze several large test sets on the ISCASS8S5 circuits
in an effort to gain insight into how existing test
generation approaches detect resistive bridges.

1. Introduction

It is known that a large percentage of fabrication defects
result in bridging faults in CMOS VLSI circuits and that
most of these are external bridging faults [1][2][3].
Therefore, tests for external bridging faults cover one of
the dominant fault types. It is also known that the stuck-at
fault, and wired and voting fault models are inadequate for
modeling realistic bridging faults [4][5]. This is mainly
because realistic bridging faults are resistive [6][7][8][9]
and have limited resistance intervals [6][10][11] where
detection can be achieved for the specific test patterns. The
parametric bridging fault model incorporates these effects
[10][11][12][13]. Using pre-computed lookup tables
permits fast yet accurate circuit modeling [14][15][16].
However our previous approach [14] is still much too slow
to handle large circuits or test sets. In particular, we were
unable to analyze the coverage of long random or weighted
random patterns such as generated by BIST.
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Parallel pattern single fault propagation (PPSFP) [17]
has proven to be a powerful technique to speed up stuck-at
fault simulation. It gains its speed through simpler data
structures and the fact that most faults are detected and
dropped in the first few vectors. We reasoned that since
similar fallout patterns are observed on real defects during
production test, PPSFP should also speed up resistive
bridging fault simulation. We have developed a pseudo-
PPSFP algorithm for resistive bridging faults using a
normalized fault coverage metric [14] and implemented
them in a fault simulator PROBE (PPSFP for Resistance-
Oriented Bridge Evaluation). PROBE is fast enough that
we have been able to analyze stuck-at, random, weighted
random, DOREME [18], and N-detect test sets on the
ISCAS85 benchmarks.

In the sections that follow we discuss our fault
propagation scheme, fault simulation algorithm,
applications to ISCAS85 benchmarks with different test
sets, conclusions and future work.

2. Detection Condition Set Propagation

2.1. Detection Condition Set (DCS)
Al X2

Y2
Figure 1. An external bridging fault.

Consider the external CMOS bridging fault in Figure 1.
To sensitize the fault, nodes X1 and Y1 should be set to
opposite fault free logic values, i.e. 1 and 0 respectively or
vice versa. Assume that X2 and Y2 are fixed at logic 1.
Then X1, Z2, and Q will have logic value D (faulty-off,
0/1), and Y1 and Z1 will have D (faulty-on, 1/0) for any
of the test vectors <Al A2 B1 B2> € {0011, 0001, 0101,
0111}. The fault is detected by a low-speed Boolean test
only when the resistance is in the interval [0, R,,,.,]. We



Table I. DCS propagation formula table

Inputs — —  — _ —
Gate D D D : D D:D I:D| 1:D |0:D |0:D
AND D(S0 - S1) D(S1,US1)) D(SO, A 50,) D(S1) | D(S0) | O(Null) | O(Null)
NAND D(S0 - S1) D(s1,Us1,) D(50,nS0,) D(S1) | D(SO) | 1(Nully | ((Null)
OR D(S1-S0) D(S1,nS1)) D(s0, US0,) I(Null) | 1(Null) | D(S) | D(S0)
NOR D(S1-50) D(S1,MS1)) D(S0,uS0;)  |0WNull)| O(Null) | p(st) | D(SO)
XOR | D(Ys, 25,(Su =S)) | D(u,,,(S1,-S1,)) | D(U,,,(S0, -S0,)) D(S1) | D(SO) | D(ST) | D(50)
XNOR | D(Ug L5 (Sy=8,) | D (S, =51)) | D(Uy,;(S0, =S0,)) | DD | D(S0) | D(S1) | D(SO)

call this the detectable resistance interval. Vy, ;is the logic
threshold voltage of the driven gates, and R, is the
maximum detectable resistance of the bridge. The fault is
detected in the resistance interval where the input voltage
of a driven gate causes a faulty logic value at the output.
The detectable resistance interval depends on V), ;s because
the maximum detectable bridging resistance occurs when
the input voltage on the driven gate reaches the logical
threshold. We assume that the gain of the driven gate is
high enough that the driven gate output can be
approximated as always a well-defined logic value. We call
the set of detectable resistance intervals for a fault the
detection condition set (DCS). At node Q, the DCS on the
propagation path is represented as

SQ = {Rbf | R]()Wer < Rbf < Ruppcr} .

A fault at node Q is represented as Dy(Sp) where D is the
faulty logic value detected when the bridge resistance
belongs to DCS S,. PROBE uses fault propagation and
detection strategies that are based on the DCS operations
described in the following sections. The reason for a DCS
formulation is that as discussed in [11], resistance intervals
can shrink or contain holes during propagation to a primary
output, so using a single resistance value such as R
would result in loss of accuracy.

2.2. DCS Propagation Formula Table

Since the DCS are sets, propagation of them from a
fault site through logic gates is done using set operations,
as shown in Figure 2. The AND gate has two inputs which
are both faulty and have their own DCS’s. Let Ry and R be
the maximum detectable bridging resistances via gates x
and y in Figure 1 respectively. Then the DCS's at nodes Z1
and Z2 are SO = {Ry | 0 < Ry < R} and S1 = {Ry|0< Ry <
R} respectively. The output Q in Figure 2 has a faulty logic
value (logic 1) only when the input A has a good value
(logic 1, outside S1) and the input B has a faulty value
(logic 1, inside S0). This is the shaded area of the Venn
Diagram in Figure 2. In other words, the fault is only

upper

detected at Q for the set S0-S1. From the above detection
through two-input AND/NAND gates requires

and detection through two-input OR/NOR gates requires
Sl SO
A2 D(Sou)
B D(S0)

D =0/1 (faulty 0) Sout (detectable at Q)

(Rupper@Q) €8, =50-51
Figure 2. DCS propagation.

D =1/0 (faulty 1)

The set SO is the DCS with logic value D, and S1 is the
DCS with logic value D. The DCS propagated at the output
Q in Figure 1 is represented as
Ry €(SOUSDH - (SO0NST) =(S0-ST)U(S1-S0)
or simply
Rbf € US,,, =S, (Sm _Sn)
a0, €{S0,81} . This is the DCS at the output of

an XOR gate. The DCS propagation formulae for other
two-input gates is shown in Table 1. For example, if a

NAND gate has inputs D(S1) and 5(50) , the output is

D(S0-S1). The equations can be nested to handle #-input
gates with more than two faulty inputs. If a gate input is
independent of the fault, it does not have any DCS, which
we represent as the Null set.

3. Pseudo-PPSFP using DCS
3.1. Worst Case Speedup

Regardless of the number of test vectors applied, there
are only a limited numbers of sensitizations for each fault,
and therefore a limited number of DCS computations that

where S



must be performed. For example, there are only 6 possible
sensitizations for an AND2-AND2 bridging fault (one
choice for a one, and three choices for a zero, and vice-
versa). Therefore, if we apply M test vectors in parallel, the
redundancy in the DCS’s is at least M/6, and M if there is
only one unique sensitization. Most of the time, the
redundancy will be higher than the minimum since multiple
sensitization and propagation paths will be simulated. If we
can eliminate all redundant computations, we can achieve a
corresponding speedup in the computation. Table II shows
the minimum speedup for several faults. Assuming M=32,
the minimum speedup will be 2—5 over SPSFP simulation.

Table Il. Minimum speedup for M bit PPSFP

Driving Gates # Possible Worst case
sensitizations speedup
AND2-AND2 6 M/6
OR2-OR2 6 M/6
AND2-OR2 10 M/10
XOR2-XOR2 8 M/8
AND2-XOR2 8 M/8
OR2-XOR2 8 M/8
AND3-AND3 14 M/14
OR3-OR3 14 M/14

3.2. Categorized DCS

To eliminate the redundant DCS calculations, we
categorize the DCS’s and keep pointers to the
corresponding categorized DCS (CDCS) for the different
test patterns. For an individual bit j in the test pattern, we
keep the logic values D;; (identical for every fault
configuration /) from the fault free logic simulation and get
the DCS pointer DCS™ for fault i and bit j in the pattern at
every propagation stage starting from the fault site. (In a
combinational circuit, the node values are fault free prior to
the fault site). This pointer DCS™ points to the categorized
DCS CDCS*. The DCS pointers DCS™” will point to the
same specific categorized DCS CDCS* if the bits with
different bit index j in the parallel pattern have the same
combination of logic values for all inputs of the logic gate
(both at the fault site and during propagation), and the bits
with different bit index j have the same DCS pointer
(during fault propagation). For example, as shown in Figure
3, suppose bits j = 0, 2, 3, 6, M-2 of the input patterns to
the AND3 gate q on the propagation path all have the same
logic pattern, say ‘101°. Also suppose bits j =0, 2, 3, 6, M-
2 of a faulty input Q1 of this gate have a common DCS
pointer and so does Q2. Then the pointers DCS™ for bits
=0, 2, 3, 6, M-2 of the output of gate q will point to the
same CDCS, and this CDCS need only be computed once.

The number of distinct logic patterns for fault 7 at gate s

in simulation pass ¢ is lui(s, t), the logic categorization

factor. A simulation pass is one application of the M
patterns to all faults. g, (s,1) is the sensitization reduction,

the number of vectors in a batch of M that either do not
excite or do not propagate the fault. Then we define the
acceleration factor for fault i as

< Qutput vector for gate ¢ >

DCS_out DCS pointer
0 0
1
2
3
4 »
5 <
6
< Imput vector for gate g >
(p0, p1 : DCS pointer)
Q1| [pl plpl plpcss M3 M2
Q2 pt pUp0 p0 DCS2
Q3
M-2 32 0 - epes

Figure 3. DCS propagation strategy,

Wj 1< u,(s,)<M
A(s,ty=14 HitS
Nid,  a(sD=0

at gate s in simulation pass . Memory and CPU time will
be reduced more when the acceleration factor is larger. The
acceleration factor is bounded below by the minimum
speedup.

4. Fault Coverage
The detection probability (DP) for a single resistance
interval is modeled as

Rll er
C physical (Rupper) =1- (1 - p) o

fit to the data in [5][7] using p=0.00258 and R, is the
upper bound of the resistance interval.

The normalized detection probability (NDP) for a
single resistance interval is

1- (1 _ p)Rupper (i.J)
1 _ (1 _ p)Rupperimax (l)

where Ripper max(i) is the maximum possible detectable
bridging resistance at the site of fault 7, and R,..(7,j) is the
upper bound of the resistance interval for fault 7, test
pattern j. For the whole circuit, we would have different
DCS's and D values at different primary outputs. If
DCS ¢+ is the DCS at primary output k with logic value

Chormal (l 5 ] ) =

p\/ for fault i, test pattern j, the DCS for the entire
circuit for fault i, test pattern ;j in simulation pass t will be
S =0u(S)
JokoT
In the general case, there might be resistance intervals
whose lower bound is not 0 in g(? . We can generalize the

formula for c,,mu(ij) to handle this. Let Ry,..(ij) and
Ripper(ij) be the lower and upper bounds respectively of an



interval in the DCS. The DCS with maximum possible
upper bound (thus maximum possible fault coverage) will
be

Sr(rizlx = {Rbf [0< Rbf < Rupperimax} .
Then the normalized detection probability Cymal(it) for
bridging fault configuration 7 in simulation pass ¢ is
Z [cphysical(Ruppenng(i) (iat))_cphysical(Rlower"n\m (lat))]

vt "t

&

cphys’/cal(Rl,tppetlnax (l ))
We drop fault i from the fault simulation if c,ymmq(i,2) is at
least the user-defined threshold fault coverage (TC).
Overall fault coverage (FC) for all faults in simulation pass
tis

¢ (i,0)
Coverall 0= Zw
i N

where N is the total number of bridging faults, assuming all
faults are equally likely.

5. Fault Simulation Algorithm

Figure 4 shows the flow chart for our fault simulation
algorithm as implemented in the PROBE simulator. After
parsing the circuit and getting the fault list, we get the first
M test vectors for the first simulation pass (we currently
use M=32). Fault free parallel logic simulation is
performed and the fault free logic values are stored for all
nodes. Then the faults in the fault list are simulated one by
one for these M vectors. At the fault site, our simulator
uses the pre-calculated lookup tables to find the detectable
resistance interval of bridging fault / for all the M test
vectors. These lookup tables are pre-computed with
HSPICE simulations as described in [14][15].

When the detectable resistance interval is obtained from
the tables for the first bit of the M-bit parallel test pattern,
it is stored in the first categorized DCS which is labeled
CDCS' and the DCS pointer for the first bit (DCS™y will
point to CDCS’. Once the first CDCS is stored, the
simulator checks the other bits of the same node and either
creates a new CDCS (if the pattern is not seen in the prior
bit indices) or points the DCS pointer to an existing CDCS
(if the pattern is redundant). These pointers (DCS"”) and
CDCS’s (CDCSX) are propagated to the primary outputs
using our DCS propagation formulae. After propagating all
these values to primary outputs, the normalized fault
coverage c¢;(i) for fault 7 and bit j is calculated for all j, for
distinct DCS’s. The simulator checks whether any c;(i) has
reached the threshold coverage and drops the fault 7 if this
is the case. This is the inner loop of the algorithm in Figure
4. The simulation will terminate if all the faults are
dropped. If not, the simulator will get the next M vectors
and repeat the procedure. This is the outer loop of the
algorithm. The simulation terminates either if the fault list
is empty or it runs out of test patterns.

Circuit 4 Parse circuit ‘
. For all faults i, find
Fault list Rupper_max(l)

Select the first

bridging fault /=0

Lookup tables

Get the first M
test vectors

Test set

Get the next M
test vectors

Fault-free logic
simulation

A
Select the Insert DCS at
’ next fault i P the fault site / 7 Lookup tables

Fault propagation Br%sa ation
to primary outputs Foobagaton
Calculate Sy(i)

]

All test patterns
simulated?

All faults N\Y %S Fault list
simulated? empty?

Figure 4. Fault simulation algorithm.

Before simulation starts, we do pre-processing to build
lookup tables with circuit-level HSPICE simulation [15].
The execution time depends on the desired resistance
interval resolution and cell library size, but typically takes
several hours. These tables are used for DCS insertion at
fault sites during logic-level simulation. Another important
task done in the pre-processing step is fault list
preparation. We are assuming that there are only 2-node
bridging faults and we used random 2-node faults in our
simulation. We currently exclude feedback faults in order
to simplify the simulation, but will include them in a future
version of the simulator. In prior resistive switch
simulation work we found that feedback bridges rarely
oscillator, so we do not except significantly different
results than presented here.

6. Simulation Results

Table III shows the statistics of the ISCASS8S5
benchmark circuits simulated using 10,016 (32-313)
random patterns on a Sun SPARC 5. Even after 10,000
random patterns, the fault coverage is often low and many
faults are not dropped. In all but c6288 the acceleration
factor is substantially higher than the lower bound of 2-5.
The simulation time is orders of magnitude slower than
stuck-at fault simulation using fsim [19]. This is primarily
due to the lower drop rate, more complex fault model, and
decision to keep lookup tables on disk to minimize
memory requirements. In retrospect the lookup tables



could have easily been held in memory, since their size is a
function of the cell library size, not the circuit size.

Table Ill. Benchmark simulation results for 10,016
random patterns

Circuit | Bridging Fault Faults Avg. Sim. Fsim
Faults | Coverage | Dropped | Accel. | Time | Time

(%) (%) Factor [ (min) | (sec)

c432 157 | 98.02 78.34 13.7 13 0.97
c499 136 | 84.04 63.97 13.0 15 1.20
c880 949 | 95.70 65.96 11.2 116 1.68
c1355 639 | 9647 69.32 12.3 216 | 2.63
¢1908 1,662 | 97.31 73.41 12.5 628 | 3.98
c2670 4294 | 87.96 61.34 10.1 25171 10.70
¢3540 4,431 | 90.00 52.92 12.0 3381 | 1045
c5315 7,121 94.77 60.78 10.5 6975 ] 10.78
c6288 3,216 | 99.63 51.93 6.0 10,054 | 13.75
c7552 12,106 | 95.71 61.24 104 | 19,908 | 20.83

Table IV shows the results of applying different
uncompacted test sets to 1,211 bridging faults for c432. All
of the combinations use approximately 10,000 vectors. In
most cases, DOREME vectors [18] are superior to other
types. Figure 5 shows that even after applying 5,120
random vectors, DOREME vectors can quickly detect
more faults. It supports the observation [20] that it is the
vectors that detect the faults, not the fault model.

Figure 6 shows the fault coverage with different types of
test sets. Applying DOREME tests achieves higher fault
coverage (FC) than applying random vectors or vectors
targeting stuck-at faults. The lower final fault coverage
with random vectors is due to the random vector resistance
of this circuit.

Table IV. Fault coverage and fault dropping for 1,211
faults in c432

Test Set # Vectors Coverage | Drop
(o) (o)
Stuck-at 288 95.34 70.69
7-Detect 320 95.82 72.17
Weighted random 480 95.90 72.58
Random 10,016 95.95 72.83
DOREME 10,016 96.24 76.38
Rand + DOREME 5,120 + 5,120 96.24 76.30
SA + Random 288 + 9,728 95.98 74.73
SA + DOREME 288 + 9,728 96.24 76.38
7-Detect + Rand 320 + 9,696 95.98 75.14
7-Detect + DOREME 320 + 9,696 96.24 76.38
WRP + DOREME 480 + 9,536 96.24 76.38

Figure 7 is the number of escapes vs. number of vectors
for DOREME vectors applied to c432 for 1,211 faults.
The escapes are subdivided by DP level. Initially many
escaped faults have low DP. By the end of the simulation
very few faults have a DP below 90%. Almost all of the
defect level is contributed by faults with 0% DP. This
suggests that to achieve a higher FC and a lower defect

level, the APTG should target the faults with 0% DP rather
than trying to drop a fault with a 99% DP.
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Figure 5. Fault dropping for c432 with 5,120 random
and 5,120 DOREME vectors.
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Figure 6. Fault coverage for mixed test sets with 10,016
vectors for c432.

7. Conclusions and Future Work

We have developed a pseudo-PPSFP algorithm for
resistive bridging faults and implemented it in the PROBE
simulator. We have used PROBE to study different test
sets on ISCAS85 circuits. One of the purposes in
developing this simulator was to make evaluation of these
test sets on the complicated fault model feasible. The
results show that while stuck-at, weighted random and N-
detect test sets provide fairly good fault coverage.
DOREME vectors are consistently superior. Combining
DOREME vectors with other tests did not improve
coverage. The DOREME vectors detect all faults detected
by the other test sets.



800

099<=DP <TC
7004 097 <= DP <99
¥193 <= DP < 97
600 - 090 <=DP <93
00 <=DP <90
n 500 - EDP=0
]
o
© 400 -
o
]
@ 300 - — -
200 - g
100 4 4
0 el
32 96 160 320 1600 3200 9600

vector #
Figure 7. Detection probability distribution for c432.

Our experiments suggest that we can reduce simulation
time by using a threshold detection probability (TP) below
100%, without much loss in fault coverage. We plan to
perform additional experiments to determine the tradeoff
between simulation time and coverage loss. Given that
fault coverage quickly exceeds 90-95% during simulation,
a TP in that range could greatly speed up simulation.

With physical design information it is possible to
extract realistic bridging faults. These can be injected into
the circuit using a gate-level bridging fault model such as a
wired-OR or wired-AND, and tests generated for them.
We would like to examine how well these tests compare to
the optimal tests of [15] and the test sets analyzed here.

The pseudo-PPSFP algorithm in PROBE greatly
accelerates simulation over SPSFP. We are developing a
true PPSFP algorithm that promises several orders of
magnitude speedup. Our goal is to achieve simulation
times competitive with stuck-at simulation while
accounting for the lower drop rate of resistive bridges.
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