
Design and Development
of the Prophesy
Performance Database
for Distributed Scientific
Applications ∗

Xingfu Wu †, Valerie E. Taylor †, Jonathan Geisler †,
Xin Li †, Zhiling Lan †, Rick Stevens ‡, Mark Hereld
‡ and Ivan R. Judson ‡

1 Introduction
Efficient execution of a scientific computing application requires insights into how
system features impact the performance of the application. A distributed system
consists of heterogeneous components, such as networks, processors, run-time sys-
tems, operating systems, etc. This heterogeneity complicates the task of gaining
insights into the performance of the application. The Prophesy project [21] is an
infrastructure that aids in gaining this needed insight based upon one’s experience
and that of others. The core component of the Prophesy system is a relational
database that allows for the recording of performance data, system features and
application details to analyze and improve the performance of scientific applica-
tions. The Prophesy infrastructure can be used to develop models based upon
significant performance data, identify the most efficient implementation of a given
function based upon the given system configuration, explore the various trends im-

∗This research was supported in part by the National Science Foundation under NSF grant
EIA-9974960 and a grant from NASA Ames.

†Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL
60208.

‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
60439.

1

2

Model
Builder

Profiling &
Instrumentation

Execution
Manager

Database
Performance

Template
Database

Execution on
Computer Platform

Analytical
Models

Coefficient
for

Predictor
Symbolic

Systems
Models

Procedural
Identification

Performance Data

PROPHESY GUI

Predictions

Instrumented Code

User Application Code

Execution Scripts

Database

Figure 1. Prophesy framework

plicated by the significant data, and predict the performance on a different system.
This paper focuses on the design and development of the Prophesy database and
illustrates the necessity for the various entities.

The Prophesy framework consists of three major components: data collection
(left section), data analysis (right section), and the three central databases, as
illustrated in Fig. 1. The data collection component focuses on the automatic
instrumentation of codes at the level of basic blocks, procedures, or functions. The
default mode consists of instrumenting the entire code at the level of basic loops and
procedures. A user can specify that the code be instrumented at a finer granularity
than that of loops or identify the particular events to be instrumented. The resultant
performance data is automatically placed in the performance database and is used
by the data analysis component to produce an analytical performance model with
coefficients, at the granularity specified by the user. The models are developed
based upon performance data from the performance database, model templates
from the template database, and system characteristics from the systems database.
The interface uses web technology to allow users to access the Prophesy system
from anywhere.

An application goes through three stages (instrumentation of the application,

3

performance data collection of many runs, and model development using optimiza-
tion techniques) to generate an analytical performance model. The Prophesy system
allows for the development of linear as well as nonlinear models. These models, when
combined with data from the system database, can be used by the prediction engine
to predict the performance on a different compute platform. The use of databases
with the Prophesy system allows users to explore the performance models developed
for different kernels, applications and systems. The data in the databases are orga-
nized in a hierarchical manner, allowing for the development of analytical models
of different granularities. The Prophesy system is an infrastructure designed to ex-
plore the plausibility and credibility of various techniques in performance evaluation
(such as scalability, efficiency, speedup, performance coupling between application
kernels, etc.) and allow users to use various metrics collectively to bring perfor-
mance analysis environments to the most advanced level. In this paper, we describe
the Prophesy Database (PD), and discuss the design and development of all three
databases: performance, system and template (used to identify the appropriate
optimization technique for generating the models).

The remainder of this paper is organized as follows. Section 2 describes the
design and development of the PD in detail. section 3 depicts an example that
demonstrates the use of the PD. Section 4 compares the PD with related work.
Section 5 summarizes the paper.

2 Prophesy Database
Recall that the Prophesy Database must accommodate queries that lead to the
development of performance models, allow for prediction of performance on other
systems, and allow for one to obtain insight into methods to improve the perfor-
mance of the application on a given distributed system. Hence, the database must
facilitate the following query types:

• Identify the best implementation of a given function for a given system con-
figuration (identified by the run-time system, operating system, processor or-
ganization, etc.)

• Use the raw performance data to generate analytical (nonlinear or linear)
models of a given function or application; the analytical model can be used
to extrapolate the performance under different system scenarios and can be
used to assist programmers in optimizing the strategy or algorithms in their
programs.

• Use the performance data to analyze application-system trends, such as scal-
ability, I/O requirements, communication requirements, etc.

• Use the performance data to analyze user specific metrics such as coupling
between functions [5].

In this section, we present the details of the implementation of the database that
accommodates the aforementioned query types and data uses. We first provide
details about the structure of applications.

4

Functions

Basic Units

 Modules

 Application

Figure 2. Hierarchical structure of applications

2.1 Hierarchical Structure of Applications

It is assumed that scientific computing applications have the following hierarchical
structure shown in Fig. 2. The description of each structure is described in detail
below. Notice that the assumption of applications is general. As an example, we
shall use NAS Parallel CG benchmarks [1] to account for the hierarchical structure
of the applications as follows.

• Application: refers to the complete large-scale scientific computing applica-
tion, which may have different versions corresponding to the development of
additional application functionalities over time. For example, for the CG
benchmark, it has the different versions such as version 1.* for PVM and 2.*
for MPI.

• Modules: refer to the various files that comprise the application; it is assumed
that the application designer uses some modularity in the application design.
For example, the parallel CG program consists of three Fortran files: cg.f,
randi8.f and print results.f. For some other applications, it is possible that
different modules are implemented in different programming languages such
as C, C++, Fortran77, Fortran90, HPF, etc.

• Functions: refer to the different function routines that may be contained in
a given module or file. For example, the module cg.f includes functions such
as makea(), conj grad(), and so on. Users will be asked to associate a ”pure
function” name with their given function where appropriate. For example,
a user may identify their function ”genfft” as the pure function FFT or the
function conj grad as a Conjugate Gradient function. Pure functions are used
to facilitate the query types that seek the best implementation of a given
function. By associating a pure function name with a given function, we
eliminate the need to try to identify a function based upon a function name,
which may be very obscure.

• Basic Units: refer to a code segment that is of smaller granularity than a

5

function but higher granularity than a basic block. Currently, basic unit is
defined as the code between two high-level language control constructs. For
example, a set of nested ’do loops’ may be considered one basic unit.

2.2 Database Organization

The PD has a hierarchical organization, consistent with the hierarchical structure
of the applications. The Entity-Relationship (ER) diagram for the PD is given
in Fig. 3; this diagram was developed using the Dezign database design tool [6].
The PD includes all three databases given in Fig. 1: performance database, system
models database and template database. The entities in Fig. 3 are organized into
four areas: application information, executable information, run information and
performance statistics. Descriptions of these four areas are given below.

• Application Information: includes two entities: Application and Owner. The
Application entity gives the application name, version number, a short de-
scription and the application owner name. It is assumed that an application
goes through various versions as one adds different functionalities over time.
Data is placed into this entity when a new application is being developed.
The addition of a new version of a given application is reflected in in the Ex-
ecutable Information, for which it is assumed that a new executable would be
generated for this new version. The Owner entity includes the owner name,
password and the owner’s email address. The password is used so that in-
formation relating to the application can only be modified or updated by the
owner.

• Executable Information: includes all of the entities related to generating an
executable of an application. These entities include details the modules and
functions that comprise the executable; the compilers and compiler flags used
for each module to generate the executable; the libraries used with the ap-
plication; the control flow at the level of functions; and the model template
which identifies the optimization method used to generate a model for the
given function. It is important to keep all of this information because of the
impact that each has on the performance of the application. For example,
it is well known that compiler options significantly impact the performance
of an application. This impact is illustrated below in Table 1 that gives the
timing results for matrix multiply on POWER2 Super Chip using IBM xlf
Fortran compiler and KAP* preprocessor [3]. It is assumed that applica-
tions may be developed using multiple languages, such as C, C++, Fortran77
and Fortran90. The Executable Information consists of the following entities:
Executable, Modules, Module Information, Functions, Function Information,
Model Templates, Model Information, Compiler, Library and Control Flow.
Data is placed into these entities when a new executable is generated.

• Run Information: includes all of the entities related to running an executable,
which includes the system information, inputs used for execution and the data
and time of the run. This system may be a single processor, single parallel
machine or distributed system. The system used for execution is described

6

Table 1. Effect of optimizers and precompilers on naive 512× 512 matrix-
matrix multiply.

Compiling Options Runtime (seconds)
none 48.89
-O2 39.15
-O3 37.69
-Pk 13.74

-O3 -Pk 1.61

in terms of the different resources in the system and the interconnection of
these resources. The system entities does not make any assumptions about
the memory system or the interconnection between processors, which is very
important and significant. By describing a system in terms of resources and
interconnections of resources we are able to characterize existing systems such
as the SGI Origin or Sony PlayStation2 or future systems that are still being
researched such as the HTMT [8]. Further the system entities allow for easy
characterization of distributed systems, which have multiple interconnects.
The Run Information consists of the entities Run, Inputs, Systems, Connec-
tion Information and Resource Types. Data is placed into these entities for
each run of a given executable.

• Performance Statistics Information: includes all of the entities related to the
raw performance data collected during execution. Performance statistics are
collected at the granularity specified by the user. The default granularity
is at the lowest level, the basic unit, resulting in performance information
being available at the level of the application, function and basic unit. For
the function-level performance statistics, we keep up with information by the
caller of a function. Hence if two functions A and B call a third function
C, the performance statistics for C are distinguished by that associated with
function A calling function C and function B calling function C. This is in-
cluded to aid in identifing and tracing bottlenecks in the application. Further,
we collect statistics about data structures, including cache misses and num-
ber of accesses, when available. Such statistics can be collected using PAPI
[13], which provides an interface to the hardware counters. The Performance
Statistics Information consists of the entities Application Performance, Func-
tion Performance, Basic Unit Performance and Data Structure Performance.
Data is placed into these entities for each run of an executable.

The Prophesy Database uses the PostgreSQL [15], which is supported on many
platforms. The use of the Dezign tool to develop the PD schema, however, al-
lows for ease of use of other database systems such as Sybase, DB2, Informix and
MySQL. We use Perl scripts to enter the performance data directly into the Proph-
esy database.

7

3 Prophesy Database Usage
In this section, we discuss how the PD can be used to generate performance models,
identify the best implementation, and allow for one to obtain insight into methods
to improve the performance of the application on a given distributed system. The
Prophesy infrastructure includes automatic instrumentation and automatic model
development, resulting in the processes described below being fully automated.

Performance models are important for understanding the performance of the
algorithms used in an application and predicting the performance of an application
on different systems. To generate a performance model with the PD, the follow-
ing information is used: executable information, run information and performance
statistics. Prophesy currently supports two distinct model types: (1) Parameteriza-
tion, which is based on system information and the given application, and (2) Curve
Fitting, which is based on the empirical data. Parameterization utilizes the system
data (e.g., communication and computation parameters for the various resources
in the system, obtained from the systems database), the control flow information,
the pure functions identified in the application, and the model templates for the
pure functions. For the case when a pure function is not used in the application,
a user can specify the model type (e.g., linear, affine, quadratic, cubic, etc.) to be
used for the full application or the different modules, as determined by the desired
level of granularity needed for the performance model. A user can request that
this model, which is based on system and application parameters, be compared to
some empirical data, if desired. Curve Fitting uses the empirical data found in the
database to generate the model. Users are prompted to identify the range of data
to be used for the curve fitting. Such models have been developed for some small
kernels such as matrix-matrix multiplication and conjugate gradient.

To identify the best implementation of a function, such as FFT or conjugate
gradient, one would query the PD with the desired pure function name (selected
from a pull down menu) and the given system (also selected from a pull down
menu). The result of this query is a pointer to the implementation that has the
best execution time, a pointer to the owner, and the compiler and compiler flags
needed to get the results. Hence, a user can take this information and contact the
owner of the application with the efficient function to get the actual code. This
code can then be easily used in an application.

The Prophesy infrastructure is targeted to the community in general. It is our
goal that many application developers will use the Prophesy system such that the
high performance computing community can benefit from each other. In this way,
a user can query the Prophesy system to get information such as the performance
of many different applications executed on a particular system, such as a linux
cluster or SGI Origin. For such a query, the PD would return the results of all
the applications executed on the desired system. This information could be used
to generate scalability plots, efficiency plots, or plots about a particular component
such as I/O or the memory subsystem. The plots would provide insights about
different classes of applications. Such plots have been generated for systems such
as a linux cluster, for which we have significant data about different applications.

8

4 Related Work
There exist different approaches to organizing performance data by using database
techniques. For example, Snodgrass [19] developed a relational approach to mon-
itoring complex systems by storing the information processed by a monitor into
a historical database. The basic idea is to use historical databases to formalize
dynamic information. The SIEVE (Spreadsheet based Interactive Event Visual-
ization Environment) system [18] maintains dependence graph information in a
static database and tracefile information in a dynamic data base. Users may select
columns from spreadsheet and associate those with graphical objects for display.
However, it depends on those instrumentations and tracefiles. The PDS (Perfor-
mance Database Server) system [7, 10] was specifically designed with a simple tab-
ular format that involves displaying the data in rows (machine configuration) and
columns (numbers). It logically organizes data according to the benchmarks them-
selves: a Linpack table, a Perfect table, etc. In contrast, the Prophesy database
is focused on data collection of the complete system, keeping information such as
compiler type and operating system. Further, detailed information is kept such as
data motion within the processor as well as between processors. Lastly, the Proph-
esy system is a complete system, which includes automatic instrumentation as well
as automated performance model development.

Significant work has been done with developing performance tools such as
Pablo [16], AIMS [20], or Paradyn [11]. These tools, while significant, have a
different focus than that of Prophesy. Prophesy includes the automatic generation
of performance models; the models may be linear or nonlinear. The aforementioned
tools provide the mechanisms for collecting the data, but do include a database of
performance data or generate the models. The model development step, which is
very time consuming, is left to the user.

Performance analysis environments, in particular PACE [9] and POEMS [14],
are being developed. These environments focus on performance predication. PACE
represents the application, computational resource requirement and communication
patterns in their CHIP 3 language. The CHIP 3 scripts are compiled and evaluated
to generate a performance prediction very quickly. POEMS evaluates the end-to-end
performance of a problem solving environment, consisting of application software,
runtime and operating system software and hardware architecture. The analyti-
cal models with POEMS include deterministic task graph analysis, LogP [4] and
LoGPC [12] models. These models are generally coarse grain, representing asymp-
totic performance. In contrast, the focus of Prophesy is on detailed, analytical
model development; Prophesy explores nonlinear as well as linear models with dif-
ferent levels of granularity. Further, Prophesy complements the PACE and POEMS
environments by providing a framework for developing models that can be added
to their various libraries. In addition, Prophesy is based on advanced database and
web technology, allowing users from anywhere to access the performance data, add
performance data, or utilize the automated processes.

9

5 Summary
This paper presents the design and development of a platform-independent Proph-
esy performance database that allows for the recording of performance data, system
features and application details in order to improve performance of scientific com-
puting applications and to reduce high cost of the iterative application software
development. It shows that the historical performance database is an appropriate
model for processing dynamic performance data of scientific computing applications,
and provides a convenient and powerful management system that guides the per-
formance data processing but does not constrain the representation of performance
data. We hope that the PD can provide computer system vendors with valuable
feedback on system bottlenecks that can be eliminated in future databases.

The Prophesy system is applicable to single processor, parallel machine and
distributed system environments. The PD is hierarchical, from which different
granularities of performance information may be obtained. We illustrated the use
of the PD with discussing how the PD can be used to generate performance models,
identify the best implementation, and allow for one to obtain insight into methods
to improve the performance of the application on a given distributed system. The
PD allows users to gain needed insights into application performance based upon
their experience as well as that of others. Currently, we are populating the PD
with performance information from some of the PACI applications and NAS serial
and parallel benchmarks. Our goal is to have the PD populated by results from
numerous research groups, thereby allowing us to gain insights from each other’s
experiences.

10

Application

Owner

Executable

Modules

Module_Information Functions

Application_Name
Version
Description
FK_Email
FK_Owner_Name

Owner_Name
Email

Executable_Name

FK_Application_Name

Modules_Name
FK_Application_Name
module_key

Compiler_Options
Language
FK_module_key
FK_Version
FK_Compiler_Name

Fuction_Name
Pure_Function_Name
FK_module_key
function_key

FK_Model_Type
FK_function_key

Model_Information

Model_Type
Optimization_Method

FK_function_key
FK_Version
FK_Library_Name

Librarys

Library_Name
Version
Description

 Run

System_Name
Number_Processors
Datatime
FK_Executable_Name
run_key

Inputs

Input_Name
Input_Value
FK_run_key

Systems

System_Name
System_Type
Operating_System
System_Location

Resource_Types

Resource_Name
Size
Speed
Number_Resources
FK_System_Name

Compilers

Compiler_Name
Version
Language

Control_Flow

FK_function_key
Called_byModule
Called_byFunction

Model_Templates Function_Information

Connection_Information

Source
Destination
Direction_Type
Bandwidth
Latency
Connection_Type
Protocal
FK_System_Name

Application_Performance

Processor_Number
Runtime
Computation_Time
Communication_Time
Communication_Throughput
I/O_Time
I/O_Bytes
Memory_Requirement
FK_run_key
app_key

Function_Name
Runtime

Computation_Time
Communcation_Time
Communication_Count
I/O_TIme
I/O_Count
Call_Count
FK_app_key
function_key

Basic_Unit_Name
Runtime
Computation_Time
Communication_Time
Communication_Count
I/O_Time
I/O_Count
Call_Count
FK_function_key
basic_unit_key

Data_Structure_Performance

Data_Structure
Processor_Utilization
Memory_Utilization
Number_Accesses
Number_Misses
FK_basic_unit_key
ds_key

Basic_Unit_Performance

Password

Function_Performance

Description

Square_Runtime

Application Information Executable Information Run Information Performance Statistics Information

Figure 3. Framework of Prophesy Database Schema

Bibliography

[1] D. Bailey, T. Harris, et al., The NAS Parallel Benchmarks, Tech. Report
NAS-95- 020, Dec. 1995. See also http://science.nas.nasa.gov/Software/NPB/.

[2] T. Boutell, CGI Programming in C & Perl, Addison-Wesley Developers
Press, 1996.

[3] Cornell Theory Center,
http://www.tc.cornell.edu/Edu/Talks/Performance/SingleProcPerf/.

[4] D. Culler, R. Karp, D. Patterson, et al., LogP: Towards a realistic
model of parallel computation, Proc. of 4th ACM SIGPLAN Conf. on Para.
Prog. Pract. and Exp., 1993.

[5] J. Geisler and V. Taylor, Performance coupling: A methodology for pre-
dicting application performance using kernel performance, Proc. of the 9th
SIAM Conference on Parallel Processing for Scientific Computing, March 1999.

[6] Heraut Automatisering, DeZign for database, version 2.3,
http://www.heraut.demon.nl/dezign/dezign.html.

[7] R. Hockney and M. Berry, Public International Benchmarks for Parallel
Computers, PARKBENCH Committee: Report-1, February 7, 1994.

[8] J. N. Amaral, G. R. Gao, P. Merkey, T. Sterling, Z. Ruiz and S.
Ryan, Performance Prediction for the HTMT: A Programming Example, Proc.
of the Third PETAFLOP workshop, Feb. 22, 1999.

[9] D. Kerbyson, J. Harper, et al., PACE: A toolset to investigate and predict
performance in parallel systems, Proc. of European Parallel Tools Meeting, Oct.
1996.

[10] B. H. LaRose, The Development and Implementation of a Performance
Database Server, Master Thesis, University of Tennessee at Knoxville, August
1993.

[11] B. P. Miller, M. D. Callaghan, et al., The Paradyn parallel performance
measurement tools, IEEE Computer, Vol. 28 (11), Nov. 1995.

11

12

[12] C. A. Moritz, and M. I. Frank, LoGPC: modeling network contention in
message-passing programs, Proc. of Intern. Conf. on Meas. and modeling of
computer systems, June 1998.

[13] S. Browne, J. Dongarra, N. Garner, K. London and P. Mucci, A
Scalable Cross-Platform Infrastructure for Application Performance Tuning
Using Hardware Counters, Proc. of Supercomputing 2000, Nov. 2000.

[14] POEMS Performance Environment, http://www.cs.utexas.edu/users/poems.

[15] PostgreSQL 7.0.2, http://www.PostgreSQL.org/docs/

[16] D. A. Reed, R. A. Aydt, et al., Scalable performance analysis: The Pablo
performance analysis environment, Proc. of the Scalable Parallel Libraries Con-
ference, Oct. 1993.

[17] R. L. Schwartz and T. Christiansen, Learning Perl, O’Reilly & Asso-
ciates, Inc., 1997.

[18] S. R. Sarukkai, and D. Gannon, SIEVE: A performance debugging envi-
ronment for parallel program, Journal of Parallel and Distributed Computing
18 (1993), 147-168.

[19] R. Snodgrass, A relational approach to monitoring complex systems, ACM
Transactions on Computer Systems, Vol. 6, No. 2 (1988), 157-196.

[20] J. C. Yan, S. R. Sarukkai, and P. Mehra, Performance measurement,
visualization and modeling of parallel and distributed programs using the AIMS
toolkit, Software Practice and Experience, Vol. 25 (4), April 1995.

[21] Valerie Taylor, Xingfu Wu, Jonathan Geisler, Xin Li, Zhiling Lan,
Rick Stevens, Mark Hereld and Ivan R. Judson, Prophesy: An In-
frastructure for Analyzing and Modeling the Performance of Parallel and Dis-
tributed Applications, Proc. of the Ninth IEEE International Symposium on
High Performance Distributed Computing (HPDC’s 2000), IEEE Computer
Society Press, Pittsburgh, August 2000.

